This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Every first component of the G sequence is less than every second component. That is, the sequences form a chain a_1 < a_2 < ... < b_2 < b_1, where a_i are the first components and b_i are the second components. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
||
| ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
||
| ruc.5 | |- G = seq 0 ( D , C ) |
||
| ruclem10.6 | |- ( ph -> M e. NN0 ) |
||
| ruclem10.7 | |- ( ph -> N e. NN0 ) |
||
| Assertion | ruclem10 | |- ( ph -> ( 1st ` ( G ` M ) ) < ( 2nd ` ( G ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| 2 | ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 3 | ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
|
| 4 | ruc.5 | |- G = seq 0 ( D , C ) |
|
| 5 | ruclem10.6 | |- ( ph -> M e. NN0 ) |
|
| 6 | ruclem10.7 | |- ( ph -> N e. NN0 ) |
|
| 7 | 1 2 3 4 | ruclem6 | |- ( ph -> G : NN0 --> ( RR X. RR ) ) |
| 8 | 7 5 | ffvelcdmd | |- ( ph -> ( G ` M ) e. ( RR X. RR ) ) |
| 9 | xp1st | |- ( ( G ` M ) e. ( RR X. RR ) -> ( 1st ` ( G ` M ) ) e. RR ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( 1st ` ( G ` M ) ) e. RR ) |
| 11 | 6 5 | ifcld | |- ( ph -> if ( M <_ N , N , M ) e. NN0 ) |
| 12 | 7 11 | ffvelcdmd | |- ( ph -> ( G ` if ( M <_ N , N , M ) ) e. ( RR X. RR ) ) |
| 13 | xp1st | |- ( ( G ` if ( M <_ N , N , M ) ) e. ( RR X. RR ) -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
|
| 14 | 12 13 | syl | |- ( ph -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
| 15 | 7 6 | ffvelcdmd | |- ( ph -> ( G ` N ) e. ( RR X. RR ) ) |
| 16 | xp2nd | |- ( ( G ` N ) e. ( RR X. RR ) -> ( 2nd ` ( G ` N ) ) e. RR ) |
|
| 17 | 15 16 | syl | |- ( ph -> ( 2nd ` ( G ` N ) ) e. RR ) |
| 18 | 5 | nn0red | |- ( ph -> M e. RR ) |
| 19 | 6 | nn0red | |- ( ph -> N e. RR ) |
| 20 | max1 | |- ( ( M e. RR /\ N e. RR ) -> M <_ if ( M <_ N , N , M ) ) |
|
| 21 | 18 19 20 | syl2anc | |- ( ph -> M <_ if ( M <_ N , N , M ) ) |
| 22 | 5 | nn0zd | |- ( ph -> M e. ZZ ) |
| 23 | 11 | nn0zd | |- ( ph -> if ( M <_ N , N , M ) e. ZZ ) |
| 24 | eluz | |- ( ( M e. ZZ /\ if ( M <_ N , N , M ) e. ZZ ) -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` M ) <-> M <_ if ( M <_ N , N , M ) ) ) |
|
| 25 | 22 23 24 | syl2anc | |- ( ph -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` M ) <-> M <_ if ( M <_ N , N , M ) ) ) |
| 26 | 21 25 | mpbird | |- ( ph -> if ( M <_ N , N , M ) e. ( ZZ>= ` M ) ) |
| 27 | 1 2 3 4 5 26 | ruclem9 | |- ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) /\ ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 28 | 27 | simpld | |- ( ph -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) ) |
| 29 | xp2nd | |- ( ( G ` if ( M <_ N , N , M ) ) e. ( RR X. RR ) -> ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
|
| 30 | 12 29 | syl | |- ( ph -> ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
| 31 | 1 2 3 4 | ruclem8 | |- ( ( ph /\ if ( M <_ N , N , M ) e. NN0 ) -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) < ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) ) |
| 32 | 11 31 | mpdan | |- ( ph -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) < ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) ) |
| 33 | max2 | |- ( ( M e. RR /\ N e. RR ) -> N <_ if ( M <_ N , N , M ) ) |
|
| 34 | 18 19 33 | syl2anc | |- ( ph -> N <_ if ( M <_ N , N , M ) ) |
| 35 | 6 | nn0zd | |- ( ph -> N e. ZZ ) |
| 36 | eluz | |- ( ( N e. ZZ /\ if ( M <_ N , N , M ) e. ZZ ) -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` N ) <-> N <_ if ( M <_ N , N , M ) ) ) |
|
| 37 | 35 23 36 | syl2anc | |- ( ph -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` N ) <-> N <_ if ( M <_ N , N , M ) ) ) |
| 38 | 34 37 | mpbird | |- ( ph -> if ( M <_ N , N , M ) e. ( ZZ>= ` N ) ) |
| 39 | 1 2 3 4 6 38 | ruclem9 | |- ( ph -> ( ( 1st ` ( G ` N ) ) <_ ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) /\ ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) <_ ( 2nd ` ( G ` N ) ) ) ) |
| 40 | 39 | simprd | |- ( ph -> ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) <_ ( 2nd ` ( G ` N ) ) ) |
| 41 | 14 30 17 32 40 | ltletrd | |- ( ph -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) < ( 2nd ` ( G ` N ) ) ) |
| 42 | 10 14 17 28 41 | lelttrd | |- ( ph -> ( 1st ` ( G ` M ) ) < ( 2nd ` ( G ` N ) ) ) |