This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . The constructed interval [ X , Y ] always excludes M . (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
||
| ruclem1.3 | |- ( ph -> A e. RR ) |
||
| ruclem1.4 | |- ( ph -> B e. RR ) |
||
| ruclem1.5 | |- ( ph -> M e. RR ) |
||
| ruclem1.6 | |- X = ( 1st ` ( <. A , B >. D M ) ) |
||
| ruclem1.7 | |- Y = ( 2nd ` ( <. A , B >. D M ) ) |
||
| ruclem2.8 | |- ( ph -> A < B ) |
||
| Assertion | ruclem3 | |- ( ph -> ( M < X \/ Y < M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| 2 | ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 3 | ruclem1.3 | |- ( ph -> A e. RR ) |
|
| 4 | ruclem1.4 | |- ( ph -> B e. RR ) |
|
| 5 | ruclem1.5 | |- ( ph -> M e. RR ) |
|
| 6 | ruclem1.6 | |- X = ( 1st ` ( <. A , B >. D M ) ) |
|
| 7 | ruclem1.7 | |- Y = ( 2nd ` ( <. A , B >. D M ) ) |
|
| 8 | ruclem2.8 | |- ( ph -> A < B ) |
|
| 9 | 3 4 | readdcld | |- ( ph -> ( A + B ) e. RR ) |
| 10 | 9 | rehalfcld | |- ( ph -> ( ( A + B ) / 2 ) e. RR ) |
| 11 | 5 10 | lenltd | |- ( ph -> ( M <_ ( ( A + B ) / 2 ) <-> -. ( ( A + B ) / 2 ) < M ) ) |
| 12 | avglt2 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
|
| 13 | 3 4 12 | syl2anc | |- ( ph -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
| 14 | 8 13 | mpbid | |- ( ph -> ( ( A + B ) / 2 ) < B ) |
| 15 | avglt1 | |- ( ( ( ( A + B ) / 2 ) e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) < B <-> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
|
| 16 | 10 4 15 | syl2anc | |- ( ph -> ( ( ( A + B ) / 2 ) < B <-> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 17 | 14 16 | mpbid | |- ( ph -> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 18 | 10 4 | readdcld | |- ( ph -> ( ( ( A + B ) / 2 ) + B ) e. RR ) |
| 19 | 18 | rehalfcld | |- ( ph -> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR ) |
| 20 | lelttr | |- ( ( M e. RR /\ ( ( A + B ) / 2 ) e. RR /\ ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR ) -> ( ( M <_ ( ( A + B ) / 2 ) /\ ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
|
| 21 | 5 10 19 20 | syl3anc | |- ( ph -> ( ( M <_ ( ( A + B ) / 2 ) /\ ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 22 | 17 21 | mpan2d | |- ( ph -> ( M <_ ( ( A + B ) / 2 ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 23 | 11 22 | sylbird | |- ( ph -> ( -. ( ( A + B ) / 2 ) < M -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 24 | 23 | imp | |- ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 25 | 1 2 3 4 5 6 7 | ruclem1 | |- ( ph -> ( ( <. A , B >. D M ) e. ( RR X. RR ) /\ X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) /\ Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) ) |
| 26 | 25 | simp2d | |- ( ph -> X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 27 | iffalse | |- ( -. ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
|
| 28 | 26 27 | sylan9eq | |- ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> X = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 29 | 24 28 | breqtrrd | |- ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> M < X ) |
| 30 | 29 | ex | |- ( ph -> ( -. ( ( A + B ) / 2 ) < M -> M < X ) ) |
| 31 | 30 | con1d | |- ( ph -> ( -. M < X -> ( ( A + B ) / 2 ) < M ) ) |
| 32 | 25 | simp3d | |- ( ph -> Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 33 | iftrue | |- ( ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) = ( ( A + B ) / 2 ) ) |
|
| 34 | 32 33 | sylan9eq | |- ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> Y = ( ( A + B ) / 2 ) ) |
| 35 | simpr | |- ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> ( ( A + B ) / 2 ) < M ) |
|
| 36 | 34 35 | eqbrtrd | |- ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> Y < M ) |
| 37 | 36 | ex | |- ( ph -> ( ( ( A + B ) / 2 ) < M -> Y < M ) ) |
| 38 | 31 37 | syld | |- ( ph -> ( -. M < X -> Y < M ) ) |
| 39 | 38 | orrd | |- ( ph -> ( M < X \/ Y < M ) ) |