This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfnl.1 | |- T e. LinFn |
|
| Assertion | lnfnsubi | |- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A -h B ) ) = ( ( T ` A ) - ( T ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | |- T e. LinFn |
|
| 2 | neg1cn | |- -u 1 e. CC |
|
| 3 | 1 | lnfnaddmuli | |- ( ( -u 1 e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A +h ( -u 1 .h B ) ) ) = ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) ) |
| 4 | 2 3 | mp3an1 | |- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h ( -u 1 .h B ) ) ) = ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) ) |
| 5 | hvsubval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
|
| 6 | 5 | fveq2d | |- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A -h B ) ) = ( T ` ( A +h ( -u 1 .h B ) ) ) ) |
| 7 | 1 | lnfnfi | |- T : ~H --> CC |
| 8 | 7 | ffvelcdmi | |- ( A e. ~H -> ( T ` A ) e. CC ) |
| 9 | 7 | ffvelcdmi | |- ( B e. ~H -> ( T ` B ) e. CC ) |
| 10 | mulm1 | |- ( ( T ` B ) e. CC -> ( -u 1 x. ( T ` B ) ) = -u ( T ` B ) ) |
|
| 11 | 10 | oveq2d | |- ( ( T ` B ) e. CC -> ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) = ( ( T ` A ) + -u ( T ` B ) ) ) |
| 12 | 11 | adantl | |- ( ( ( T ` A ) e. CC /\ ( T ` B ) e. CC ) -> ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) = ( ( T ` A ) + -u ( T ` B ) ) ) |
| 13 | negsub | |- ( ( ( T ` A ) e. CC /\ ( T ` B ) e. CC ) -> ( ( T ` A ) + -u ( T ` B ) ) = ( ( T ` A ) - ( T ` B ) ) ) |
|
| 14 | 12 13 | eqtr2d | |- ( ( ( T ` A ) e. CC /\ ( T ` B ) e. CC ) -> ( ( T ` A ) - ( T ` B ) ) = ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) ) |
| 15 | 8 9 14 | syl2an | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( T ` A ) - ( T ` B ) ) = ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) ) |
| 16 | 4 6 15 | 3eqtr4d | |- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A -h B ) ) = ( ( T ` A ) - ( T ` B ) ) ) |