This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfnl.1 | |- T e. LinFn |
|
| Assertion | lnfnmuli | |- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A x. ( T ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | |- T e. LinFn |
|
| 2 | ax-hv0cl | |- 0h e. ~H |
|
| 3 | 1 | lnfnli | |- ( ( A e. CC /\ B e. ~H /\ 0h e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) ) |
| 4 | 2 3 | mp3an3 | |- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) ) |
| 5 | hvmulcl | |- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
|
| 6 | ax-hvaddid | |- ( ( A .h B ) e. ~H -> ( ( A .h B ) +h 0h ) = ( A .h B ) ) |
|
| 7 | 5 6 | syl | |- ( ( A e. CC /\ B e. ~H ) -> ( ( A .h B ) +h 0h ) = ( A .h B ) ) |
| 8 | 7 | fveq2d | |- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( T ` ( A .h B ) ) ) |
| 9 | 1 | lnfn0i | |- ( T ` 0h ) = 0 |
| 10 | 9 | oveq2i | |- ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) = ( ( A x. ( T ` B ) ) + 0 ) |
| 11 | 1 | lnfnfi | |- T : ~H --> CC |
| 12 | 11 | ffvelcdmi | |- ( B e. ~H -> ( T ` B ) e. CC ) |
| 13 | mulcl | |- ( ( A e. CC /\ ( T ` B ) e. CC ) -> ( A x. ( T ` B ) ) e. CC ) |
|
| 14 | 12 13 | sylan2 | |- ( ( A e. CC /\ B e. ~H ) -> ( A x. ( T ` B ) ) e. CC ) |
| 15 | 14 | addridd | |- ( ( A e. CC /\ B e. ~H ) -> ( ( A x. ( T ` B ) ) + 0 ) = ( A x. ( T ` B ) ) ) |
| 16 | 10 15 | eqtrid | |- ( ( A e. CC /\ B e. ~H ) -> ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) = ( A x. ( T ` B ) ) ) |
| 17 | 4 8 16 | 3eqtr3d | |- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A x. ( T ` B ) ) ) |