This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of Beran p. 102. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ococ.1 | |- A e. CH |
|
| Assertion | ococi | |- ( _|_ ` ( _|_ ` A ) ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ococ.1 | |- A e. CH |
|
| 2 | 1 | chshii | |- A e. SH |
| 3 | shocsh | |- ( A e. SH -> ( _|_ ` A ) e. SH ) |
|
| 4 | 2 3 | ax-mp | |- ( _|_ ` A ) e. SH |
| 5 | shocsh | |- ( ( _|_ ` A ) e. SH -> ( _|_ ` ( _|_ ` A ) ) e. SH ) |
|
| 6 | 4 5 | ax-mp | |- ( _|_ ` ( _|_ ` A ) ) e. SH |
| 7 | shococss | |- ( A e. SH -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
|
| 8 | 2 7 | ax-mp | |- A C_ ( _|_ ` ( _|_ ` A ) ) |
| 9 | incom | |- ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` A ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` A ) ) ) |
|
| 10 | ocin | |- ( ( _|_ ` A ) e. SH -> ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` A ) ) ) = 0H ) |
|
| 11 | 4 10 | ax-mp | |- ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` A ) ) ) = 0H |
| 12 | 9 11 | eqtri | |- ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` A ) ) = 0H |
| 13 | 1 6 8 12 | omlsii | |- A = ( _|_ ` ( _|_ ` A ) ) |
| 14 | 13 | eqcomi | |- ( _|_ ` ( _|_ ` A ) ) = A |