This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between division and multiplication. (Contributed by NM, 13-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmul3 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = B <-> A = ( B x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divmul2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = B <-> A = ( C x. B ) ) ) |
|
| 2 | mulcom | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
|
| 3 | 2 | adantrr | |- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B x. C ) = ( C x. B ) ) |
| 4 | 3 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B x. C ) = ( C x. B ) ) |
| 5 | 4 | eqeq2d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A = ( B x. C ) <-> A = ( C x. B ) ) ) |
| 6 | 1 5 | bitr4d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = B <-> A = ( B x. C ) ) ) |