This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero inner product with self means vector is zero. Lemma 3.1(S6) of Beran p. 95. (Contributed by NM, 27-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his6 | |- ( A e. ~H -> ( ( A .ih A ) = 0 <-> A = 0h ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-his4 | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |
|
| 2 | 1 | gt0ne0d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( A .ih A ) =/= 0 ) |
| 3 | 2 | ex | |- ( A e. ~H -> ( A =/= 0h -> ( A .ih A ) =/= 0 ) ) |
| 4 | 3 | necon4d | |- ( A e. ~H -> ( ( A .ih A ) = 0 -> A = 0h ) ) |
| 5 | hi01 | |- ( A e. ~H -> ( 0h .ih A ) = 0 ) |
|
| 6 | oveq1 | |- ( A = 0h -> ( A .ih A ) = ( 0h .ih A ) ) |
|
| 7 | 6 | eqeq1d | |- ( A = 0h -> ( ( A .ih A ) = 0 <-> ( 0h .ih A ) = 0 ) ) |
| 8 | 5 7 | syl5ibrcom | |- ( A e. ~H -> ( A = 0h -> ( A .ih A ) = 0 ) ) |
| 9 | 4 8 | impbid | |- ( A e. ~H -> ( ( A .ih A ) = 0 <-> A = 0h ) ) |