This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his52 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( ( * ` A ) .h C ) ) = ( A x. ( B .ih C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 2 | his5 | |- ( ( ( * ` A ) e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( ( * ` A ) .h C ) ) = ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) ) |
|
| 3 | 1 2 | syl3an1 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( ( * ` A ) .h C ) ) = ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) ) |
| 4 | cjcj | |- ( A e. CC -> ( * ` ( * ` A ) ) = A ) |
|
| 5 | 4 | oveq1d | |- ( A e. CC -> ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) = ( A x. ( B .ih C ) ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( * ` ( * ` A ) ) x. ( B .ih C ) ) = ( A x. ( B .ih C ) ) ) |
| 7 | 3 6 | eqtrd | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( ( * ` A ) .h C ) ) = ( A x. ( B .ih C ) ) ) |