This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his2sub | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih C ) = ( ( A .ih C ) - ( B .ih C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
|
| 2 | 1 | oveq1d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h B ) .ih C ) = ( ( A +h ( -u 1 .h B ) ) .ih C ) ) |
| 3 | 2 | 3adant3 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih C ) = ( ( A +h ( -u 1 .h B ) ) .ih C ) ) |
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | hvmulcl | |- ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) |
|
| 6 | 4 5 | mpan | |- ( B e. ~H -> ( -u 1 .h B ) e. ~H ) |
| 7 | ax-his2 | |- ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H /\ C e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) .ih C ) = ( ( A .ih C ) + ( ( -u 1 .h B ) .ih C ) ) ) |
|
| 8 | 6 7 | syl3an2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) .ih C ) = ( ( A .ih C ) + ( ( -u 1 .h B ) .ih C ) ) ) |
| 9 | ax-his3 | |- ( ( -u 1 e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) .ih C ) = ( -u 1 x. ( B .ih C ) ) ) |
|
| 10 | 4 9 | mp3an1 | |- ( ( B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) .ih C ) = ( -u 1 x. ( B .ih C ) ) ) |
| 11 | hicl | |- ( ( B e. ~H /\ C e. ~H ) -> ( B .ih C ) e. CC ) |
|
| 12 | 11 | mulm1d | |- ( ( B e. ~H /\ C e. ~H ) -> ( -u 1 x. ( B .ih C ) ) = -u ( B .ih C ) ) |
| 13 | 10 12 | eqtrd | |- ( ( B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) .ih C ) = -u ( B .ih C ) ) |
| 14 | 13 | oveq2d | |- ( ( B e. ~H /\ C e. ~H ) -> ( ( A .ih C ) + ( ( -u 1 .h B ) .ih C ) ) = ( ( A .ih C ) + -u ( B .ih C ) ) ) |
| 15 | 14 | 3adant1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A .ih C ) + ( ( -u 1 .h B ) .ih C ) ) = ( ( A .ih C ) + -u ( B .ih C ) ) ) |
| 16 | 8 15 | eqtrd | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) .ih C ) = ( ( A .ih C ) + -u ( B .ih C ) ) ) |
| 17 | hicl | |- ( ( A e. ~H /\ C e. ~H ) -> ( A .ih C ) e. CC ) |
|
| 18 | 17 | 3adant2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih C ) e. CC ) |
| 19 | 11 | 3adant1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B .ih C ) e. CC ) |
| 20 | 18 19 | negsubd | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A .ih C ) + -u ( B .ih C ) ) = ( ( A .ih C ) - ( B .ih C ) ) ) |
| 21 | 3 16 20 | 3eqtrd | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih C ) = ( ( A .ih C ) - ( B .ih C ) ) ) |