This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | choc0 | |- ( _|_ ` 0H ) = ~H |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h0elsh | |- 0H e. SH |
|
| 2 | shocel | |- ( 0H e. SH -> ( x e. ( _|_ ` 0H ) <-> ( x e. ~H /\ A. y e. 0H ( x .ih y ) = 0 ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( x e. ( _|_ ` 0H ) <-> ( x e. ~H /\ A. y e. 0H ( x .ih y ) = 0 ) ) |
| 4 | hi02 | |- ( x e. ~H -> ( x .ih 0h ) = 0 ) |
|
| 5 | df-ral | |- ( A. y e. 0H ( x .ih y ) = 0 <-> A. y ( y e. 0H -> ( x .ih y ) = 0 ) ) |
|
| 6 | elch0 | |- ( y e. 0H <-> y = 0h ) |
|
| 7 | 6 | imbi1i | |- ( ( y e. 0H -> ( x .ih y ) = 0 ) <-> ( y = 0h -> ( x .ih y ) = 0 ) ) |
| 8 | 7 | albii | |- ( A. y ( y e. 0H -> ( x .ih y ) = 0 ) <-> A. y ( y = 0h -> ( x .ih y ) = 0 ) ) |
| 9 | ax-hv0cl | |- 0h e. ~H |
|
| 10 | 9 | elexi | |- 0h e. _V |
| 11 | oveq2 | |- ( y = 0h -> ( x .ih y ) = ( x .ih 0h ) ) |
|
| 12 | 11 | eqeq1d | |- ( y = 0h -> ( ( x .ih y ) = 0 <-> ( x .ih 0h ) = 0 ) ) |
| 13 | 10 12 | ceqsalv | |- ( A. y ( y = 0h -> ( x .ih y ) = 0 ) <-> ( x .ih 0h ) = 0 ) |
| 14 | 8 13 | bitri | |- ( A. y ( y e. 0H -> ( x .ih y ) = 0 ) <-> ( x .ih 0h ) = 0 ) |
| 15 | 5 14 | bitri | |- ( A. y e. 0H ( x .ih y ) = 0 <-> ( x .ih 0h ) = 0 ) |
| 16 | 4 15 | sylibr | |- ( x e. ~H -> A. y e. 0H ( x .ih y ) = 0 ) |
| 17 | abai | |- ( ( x e. ~H /\ A. y e. 0H ( x .ih y ) = 0 ) <-> ( x e. ~H /\ ( x e. ~H -> A. y e. 0H ( x .ih y ) = 0 ) ) ) |
|
| 18 | 16 17 | mpbiran2 | |- ( ( x e. ~H /\ A. y e. 0H ( x .ih y ) = 0 ) <-> x e. ~H ) |
| 19 | 3 18 | bitri | |- ( x e. ( _|_ ` 0H ) <-> x e. ~H ) |
| 20 | 19 | eqriv | |- ( _|_ ` 0H ) = ~H |