This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnlfn | |- ( T : ~H --> CC -> ( A e. ( null ` T ) <-> ( A e. ~H /\ ( T ` A ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlfnval | |- ( T : ~H --> CC -> ( null ` T ) = ( `' T " { 0 } ) ) |
|
| 2 | cnvimass | |- ( `' T " { 0 } ) C_ dom T |
|
| 3 | 1 2 | eqsstrdi | |- ( T : ~H --> CC -> ( null ` T ) C_ dom T ) |
| 4 | fdm | |- ( T : ~H --> CC -> dom T = ~H ) |
|
| 5 | 3 4 | sseqtrd | |- ( T : ~H --> CC -> ( null ` T ) C_ ~H ) |
| 6 | 5 | sseld | |- ( T : ~H --> CC -> ( A e. ( null ` T ) -> A e. ~H ) ) |
| 7 | 6 | pm4.71rd | |- ( T : ~H --> CC -> ( A e. ( null ` T ) <-> ( A e. ~H /\ A e. ( null ` T ) ) ) ) |
| 8 | 1 | eleq2d | |- ( T : ~H --> CC -> ( A e. ( null ` T ) <-> A e. ( `' T " { 0 } ) ) ) |
| 9 | 8 | adantr | |- ( ( T : ~H --> CC /\ A e. ~H ) -> ( A e. ( null ` T ) <-> A e. ( `' T " { 0 } ) ) ) |
| 10 | ffn | |- ( T : ~H --> CC -> T Fn ~H ) |
|
| 11 | eleq1 | |- ( x = A -> ( x e. ( `' T " { 0 } ) <-> A e. ( `' T " { 0 } ) ) ) |
|
| 12 | fveqeq2 | |- ( x = A -> ( ( T ` x ) = 0 <-> ( T ` A ) = 0 ) ) |
|
| 13 | 11 12 | bibi12d | |- ( x = A -> ( ( x e. ( `' T " { 0 } ) <-> ( T ` x ) = 0 ) <-> ( A e. ( `' T " { 0 } ) <-> ( T ` A ) = 0 ) ) ) |
| 14 | 13 | imbi2d | |- ( x = A -> ( ( T Fn ~H -> ( x e. ( `' T " { 0 } ) <-> ( T ` x ) = 0 ) ) <-> ( T Fn ~H -> ( A e. ( `' T " { 0 } ) <-> ( T ` A ) = 0 ) ) ) ) |
| 15 | 0cn | |- 0 e. CC |
|
| 16 | vex | |- x e. _V |
|
| 17 | 16 | eliniseg | |- ( 0 e. CC -> ( x e. ( `' T " { 0 } ) <-> x T 0 ) ) |
| 18 | 15 17 | ax-mp | |- ( x e. ( `' T " { 0 } ) <-> x T 0 ) |
| 19 | fnbrfvb | |- ( ( T Fn ~H /\ x e. ~H ) -> ( ( T ` x ) = 0 <-> x T 0 ) ) |
|
| 20 | 18 19 | bitr4id | |- ( ( T Fn ~H /\ x e. ~H ) -> ( x e. ( `' T " { 0 } ) <-> ( T ` x ) = 0 ) ) |
| 21 | 20 | expcom | |- ( x e. ~H -> ( T Fn ~H -> ( x e. ( `' T " { 0 } ) <-> ( T ` x ) = 0 ) ) ) |
| 22 | 14 21 | vtoclga | |- ( A e. ~H -> ( T Fn ~H -> ( A e. ( `' T " { 0 } ) <-> ( T ` A ) = 0 ) ) ) |
| 23 | 10 22 | mpan9 | |- ( ( T : ~H --> CC /\ A e. ~H ) -> ( A e. ( `' T " { 0 } ) <-> ( T ` A ) = 0 ) ) |
| 24 | 9 23 | bitrd | |- ( ( T : ~H --> CC /\ A e. ~H ) -> ( A e. ( null ` T ) <-> ( T ` A ) = 0 ) ) |
| 25 | 24 | pm5.32da | |- ( T : ~H --> CC -> ( ( A e. ~H /\ A e. ( null ` T ) ) <-> ( A e. ~H /\ ( T ` A ) = 0 ) ) ) |
| 26 | 7 25 | bitrd | |- ( T : ~H --> CC -> ( A e. ( null ` T ) <-> ( A e. ~H /\ ( T ` A ) = 0 ) ) ) |