This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of Beran p. 104. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlelch.1 | |- T e. LinFn |
|
| nlelch.2 | |- T e. ContFn |
||
| Assertion | riesz4i | |- E! w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlelch.1 | |- T e. LinFn |
|
| 2 | nlelch.2 | |- T e. ContFn |
|
| 3 | 1 2 | riesz3i | |- E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) |
| 4 | r19.26 | |- ( A. v e. ~H ( ( T ` v ) = ( v .ih w ) /\ ( T ` v ) = ( v .ih u ) ) <-> ( A. v e. ~H ( T ` v ) = ( v .ih w ) /\ A. v e. ~H ( T ` v ) = ( v .ih u ) ) ) |
|
| 5 | oveq12 | |- ( ( ( T ` v ) = ( v .ih w ) /\ ( T ` v ) = ( v .ih u ) ) -> ( ( T ` v ) - ( T ` v ) ) = ( ( v .ih w ) - ( v .ih u ) ) ) |
|
| 6 | 5 | adantl | |- ( ( v e. ~H /\ ( ( T ` v ) = ( v .ih w ) /\ ( T ` v ) = ( v .ih u ) ) ) -> ( ( T ` v ) - ( T ` v ) ) = ( ( v .ih w ) - ( v .ih u ) ) ) |
| 7 | 1 | lnfnfi | |- T : ~H --> CC |
| 8 | 7 | ffvelcdmi | |- ( v e. ~H -> ( T ` v ) e. CC ) |
| 9 | 8 | subidd | |- ( v e. ~H -> ( ( T ` v ) - ( T ` v ) ) = 0 ) |
| 10 | 9 | adantr | |- ( ( v e. ~H /\ ( ( T ` v ) = ( v .ih w ) /\ ( T ` v ) = ( v .ih u ) ) ) -> ( ( T ` v ) - ( T ` v ) ) = 0 ) |
| 11 | 6 10 | eqtr3d | |- ( ( v e. ~H /\ ( ( T ` v ) = ( v .ih w ) /\ ( T ` v ) = ( v .ih u ) ) ) -> ( ( v .ih w ) - ( v .ih u ) ) = 0 ) |
| 12 | 11 | ralimiaa | |- ( A. v e. ~H ( ( T ` v ) = ( v .ih w ) /\ ( T ` v ) = ( v .ih u ) ) -> A. v e. ~H ( ( v .ih w ) - ( v .ih u ) ) = 0 ) |
| 13 | 4 12 | sylbir | |- ( ( A. v e. ~H ( T ` v ) = ( v .ih w ) /\ A. v e. ~H ( T ` v ) = ( v .ih u ) ) -> A. v e. ~H ( ( v .ih w ) - ( v .ih u ) ) = 0 ) |
| 14 | hvsubcl | |- ( ( w e. ~H /\ u e. ~H ) -> ( w -h u ) e. ~H ) |
|
| 15 | oveq1 | |- ( v = ( w -h u ) -> ( v .ih w ) = ( ( w -h u ) .ih w ) ) |
|
| 16 | oveq1 | |- ( v = ( w -h u ) -> ( v .ih u ) = ( ( w -h u ) .ih u ) ) |
|
| 17 | 15 16 | oveq12d | |- ( v = ( w -h u ) -> ( ( v .ih w ) - ( v .ih u ) ) = ( ( ( w -h u ) .ih w ) - ( ( w -h u ) .ih u ) ) ) |
| 18 | 17 | eqeq1d | |- ( v = ( w -h u ) -> ( ( ( v .ih w ) - ( v .ih u ) ) = 0 <-> ( ( ( w -h u ) .ih w ) - ( ( w -h u ) .ih u ) ) = 0 ) ) |
| 19 | 18 | rspcv | |- ( ( w -h u ) e. ~H -> ( A. v e. ~H ( ( v .ih w ) - ( v .ih u ) ) = 0 -> ( ( ( w -h u ) .ih w ) - ( ( w -h u ) .ih u ) ) = 0 ) ) |
| 20 | 14 19 | syl | |- ( ( w e. ~H /\ u e. ~H ) -> ( A. v e. ~H ( ( v .ih w ) - ( v .ih u ) ) = 0 -> ( ( ( w -h u ) .ih w ) - ( ( w -h u ) .ih u ) ) = 0 ) ) |
| 21 | normcl | |- ( ( w -h u ) e. ~H -> ( normh ` ( w -h u ) ) e. RR ) |
|
| 22 | 21 | recnd | |- ( ( w -h u ) e. ~H -> ( normh ` ( w -h u ) ) e. CC ) |
| 23 | sqeq0 | |- ( ( normh ` ( w -h u ) ) e. CC -> ( ( ( normh ` ( w -h u ) ) ^ 2 ) = 0 <-> ( normh ` ( w -h u ) ) = 0 ) ) |
|
| 24 | 22 23 | syl | |- ( ( w -h u ) e. ~H -> ( ( ( normh ` ( w -h u ) ) ^ 2 ) = 0 <-> ( normh ` ( w -h u ) ) = 0 ) ) |
| 25 | norm-i | |- ( ( w -h u ) e. ~H -> ( ( normh ` ( w -h u ) ) = 0 <-> ( w -h u ) = 0h ) ) |
|
| 26 | 24 25 | bitrd | |- ( ( w -h u ) e. ~H -> ( ( ( normh ` ( w -h u ) ) ^ 2 ) = 0 <-> ( w -h u ) = 0h ) ) |
| 27 | 14 26 | syl | |- ( ( w e. ~H /\ u e. ~H ) -> ( ( ( normh ` ( w -h u ) ) ^ 2 ) = 0 <-> ( w -h u ) = 0h ) ) |
| 28 | normsq | |- ( ( w -h u ) e. ~H -> ( ( normh ` ( w -h u ) ) ^ 2 ) = ( ( w -h u ) .ih ( w -h u ) ) ) |
|
| 29 | 14 28 | syl | |- ( ( w e. ~H /\ u e. ~H ) -> ( ( normh ` ( w -h u ) ) ^ 2 ) = ( ( w -h u ) .ih ( w -h u ) ) ) |
| 30 | simpl | |- ( ( w e. ~H /\ u e. ~H ) -> w e. ~H ) |
|
| 31 | simpr | |- ( ( w e. ~H /\ u e. ~H ) -> u e. ~H ) |
|
| 32 | his2sub2 | |- ( ( ( w -h u ) e. ~H /\ w e. ~H /\ u e. ~H ) -> ( ( w -h u ) .ih ( w -h u ) ) = ( ( ( w -h u ) .ih w ) - ( ( w -h u ) .ih u ) ) ) |
|
| 33 | 14 30 31 32 | syl3anc | |- ( ( w e. ~H /\ u e. ~H ) -> ( ( w -h u ) .ih ( w -h u ) ) = ( ( ( w -h u ) .ih w ) - ( ( w -h u ) .ih u ) ) ) |
| 34 | 29 33 | eqtrd | |- ( ( w e. ~H /\ u e. ~H ) -> ( ( normh ` ( w -h u ) ) ^ 2 ) = ( ( ( w -h u ) .ih w ) - ( ( w -h u ) .ih u ) ) ) |
| 35 | 34 | eqeq1d | |- ( ( w e. ~H /\ u e. ~H ) -> ( ( ( normh ` ( w -h u ) ) ^ 2 ) = 0 <-> ( ( ( w -h u ) .ih w ) - ( ( w -h u ) .ih u ) ) = 0 ) ) |
| 36 | hvsubeq0 | |- ( ( w e. ~H /\ u e. ~H ) -> ( ( w -h u ) = 0h <-> w = u ) ) |
|
| 37 | 27 35 36 | 3bitr3d | |- ( ( w e. ~H /\ u e. ~H ) -> ( ( ( ( w -h u ) .ih w ) - ( ( w -h u ) .ih u ) ) = 0 <-> w = u ) ) |
| 38 | 20 37 | sylibd | |- ( ( w e. ~H /\ u e. ~H ) -> ( A. v e. ~H ( ( v .ih w ) - ( v .ih u ) ) = 0 -> w = u ) ) |
| 39 | 13 38 | syl5 | |- ( ( w e. ~H /\ u e. ~H ) -> ( ( A. v e. ~H ( T ` v ) = ( v .ih w ) /\ A. v e. ~H ( T ` v ) = ( v .ih u ) ) -> w = u ) ) |
| 40 | 39 | rgen2 | |- A. w e. ~H A. u e. ~H ( ( A. v e. ~H ( T ` v ) = ( v .ih w ) /\ A. v e. ~H ( T ` v ) = ( v .ih u ) ) -> w = u ) |
| 41 | oveq2 | |- ( w = u -> ( v .ih w ) = ( v .ih u ) ) |
|
| 42 | 41 | eqeq2d | |- ( w = u -> ( ( T ` v ) = ( v .ih w ) <-> ( T ` v ) = ( v .ih u ) ) ) |
| 43 | 42 | ralbidv | |- ( w = u -> ( A. v e. ~H ( T ` v ) = ( v .ih w ) <-> A. v e. ~H ( T ` v ) = ( v .ih u ) ) ) |
| 44 | 43 | reu4 | |- ( E! w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) <-> ( E. w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) /\ A. w e. ~H A. u e. ~H ( ( A. v e. ~H ( T ` v ) = ( v .ih w ) /\ A. v e. ~H ( T ` v ) = ( v .ih u ) ) -> w = u ) ) ) |
| 45 | 3 40 44 | mpbir2an | |- E! w e. ~H A. v e. ~H ( T ` v ) = ( v .ih w ) |