This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Members of a subset and its complement are orthogonal. (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocorth | |- ( H C_ ~H -> ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A .ih B ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocel | |- ( H C_ ~H -> ( B e. ( _|_ ` H ) <-> ( B e. ~H /\ A. x e. H ( B .ih x ) = 0 ) ) ) |
|
| 2 | 1 | simplbda | |- ( ( H C_ ~H /\ B e. ( _|_ ` H ) ) -> A. x e. H ( B .ih x ) = 0 ) |
| 3 | 2 | adantl | |- ( ( ( H C_ ~H /\ A e. H ) /\ ( H C_ ~H /\ B e. ( _|_ ` H ) ) ) -> A. x e. H ( B .ih x ) = 0 ) |
| 4 | oveq2 | |- ( x = A -> ( B .ih x ) = ( B .ih A ) ) |
|
| 5 | 4 | eqeq1d | |- ( x = A -> ( ( B .ih x ) = 0 <-> ( B .ih A ) = 0 ) ) |
| 6 | 5 | rspcv | |- ( A e. H -> ( A. x e. H ( B .ih x ) = 0 -> ( B .ih A ) = 0 ) ) |
| 7 | 6 | ad2antlr | |- ( ( ( H C_ ~H /\ A e. H ) /\ ( H C_ ~H /\ B e. ( _|_ ` H ) ) ) -> ( A. x e. H ( B .ih x ) = 0 -> ( B .ih A ) = 0 ) ) |
| 8 | ssel2 | |- ( ( H C_ ~H /\ A e. H ) -> A e. ~H ) |
|
| 9 | ocss | |- ( H C_ ~H -> ( _|_ ` H ) C_ ~H ) |
|
| 10 | 9 | sselda | |- ( ( H C_ ~H /\ B e. ( _|_ ` H ) ) -> B e. ~H ) |
| 11 | orthcom | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 <-> ( B .ih A ) = 0 ) ) |
|
| 12 | 8 10 11 | syl2an | |- ( ( ( H C_ ~H /\ A e. H ) /\ ( H C_ ~H /\ B e. ( _|_ ` H ) ) ) -> ( ( A .ih B ) = 0 <-> ( B .ih A ) = 0 ) ) |
| 13 | 7 12 | sylibrd | |- ( ( ( H C_ ~H /\ A e. H ) /\ ( H C_ ~H /\ B e. ( _|_ ` H ) ) ) -> ( A. x e. H ( B .ih x ) = 0 -> ( A .ih B ) = 0 ) ) |
| 14 | 3 13 | mpd | |- ( ( ( H C_ ~H /\ A e. H ) /\ ( H C_ ~H /\ B e. ( _|_ ` H ) ) ) -> ( A .ih B ) = 0 ) |
| 15 | 14 | anandis | |- ( ( H C_ ~H /\ ( A e. H /\ B e. ( _|_ ` H ) ) ) -> ( A .ih B ) = 0 ) |
| 16 | 15 | ex | |- ( H C_ ~H -> ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A .ih B ) = 0 ) ) |