This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of Beran p. 103. (Contributed by NM, 11-Feb-2006) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlelch.1 | |- T e. LinFn |
|
| nlelch.2 | |- T e. ContFn |
||
| Assertion | nlelchi | |- ( null ` T ) e. CH |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlelch.1 | |- T e. LinFn |
|
| 2 | nlelch.2 | |- T e. ContFn |
|
| 3 | 1 | nlelshi | |- ( null ` T ) e. SH |
| 4 | vex | |- x e. _V |
|
| 5 | 4 | hlimveci | |- ( f ~~>v x -> x e. ~H ) |
| 6 | 5 | adantl | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ~H ) |
| 7 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 8 | 7 | cnfldhaus | |- ( TopOpen ` CCfld ) e. Haus |
| 9 | 8 | a1i | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( TopOpen ` CCfld ) e. Haus ) |
| 10 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 11 | eqid | |- ( normh o. -h ) = ( normh o. -h ) |
|
| 12 | 10 11 | hhims | |- ( normh o. -h ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
| 13 | eqid | |- ( MetOpen ` ( normh o. -h ) ) = ( MetOpen ` ( normh o. -h ) ) |
|
| 14 | 10 12 13 | hhlm | |- ~~>v = ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) |
| 15 | resss | |- ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
|
| 16 | 14 15 | eqsstri | |- ~~>v C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
| 17 | 16 | ssbri | |- ( f ~~>v x -> f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) x ) |
| 18 | 17 | adantl | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) x ) |
| 19 | 11 13 7 | hhcnf | |- ContFn = ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) |
| 20 | 2 19 | eleqtri | |- T e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) |
| 21 | 20 | a1i | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> T e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 22 | 18 21 | lmcn | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) ( ~~>t ` ( TopOpen ` CCfld ) ) ( T ` x ) ) |
| 23 | 1 | lnfnfi | |- T : ~H --> CC |
| 24 | ffvelcdm | |- ( ( f : NN --> ( null ` T ) /\ n e. NN ) -> ( f ` n ) e. ( null ` T ) ) |
|
| 25 | 24 | adantlr | |- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( f ` n ) e. ( null ` T ) ) |
| 26 | elnlfn2 | |- ( ( T : ~H --> CC /\ ( f ` n ) e. ( null ` T ) ) -> ( T ` ( f ` n ) ) = 0 ) |
|
| 27 | 23 25 26 | sylancr | |- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( T ` ( f ` n ) ) = 0 ) |
| 28 | fvco3 | |- ( ( f : NN --> ( null ` T ) /\ n e. NN ) -> ( ( T o. f ) ` n ) = ( T ` ( f ` n ) ) ) |
|
| 29 | 28 | adantlr | |- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( ( T o. f ) ` n ) = ( T ` ( f ` n ) ) ) |
| 30 | c0ex | |- 0 e. _V |
|
| 31 | 30 | fvconst2 | |- ( n e. NN -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
| 32 | 31 | adantl | |- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
| 33 | 27 29 32 | 3eqtr4d | |- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) |
| 34 | 33 | ralrimiva | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> A. n e. NN ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) |
| 35 | ffn | |- ( T : ~H --> CC -> T Fn ~H ) |
|
| 36 | 23 35 | ax-mp | |- T Fn ~H |
| 37 | simpl | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> f : NN --> ( null ` T ) ) |
|
| 38 | 3 | shssii | |- ( null ` T ) C_ ~H |
| 39 | fss | |- ( ( f : NN --> ( null ` T ) /\ ( null ` T ) C_ ~H ) -> f : NN --> ~H ) |
|
| 40 | 37 38 39 | sylancl | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> f : NN --> ~H ) |
| 41 | fnfco | |- ( ( T Fn ~H /\ f : NN --> ~H ) -> ( T o. f ) Fn NN ) |
|
| 42 | 36 40 41 | sylancr | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) Fn NN ) |
| 43 | 30 | fconst | |- ( NN X. { 0 } ) : NN --> { 0 } |
| 44 | ffn | |- ( ( NN X. { 0 } ) : NN --> { 0 } -> ( NN X. { 0 } ) Fn NN ) |
|
| 45 | 43 44 | ax-mp | |- ( NN X. { 0 } ) Fn NN |
| 46 | eqfnfv | |- ( ( ( T o. f ) Fn NN /\ ( NN X. { 0 } ) Fn NN ) -> ( ( T o. f ) = ( NN X. { 0 } ) <-> A. n e. NN ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) ) |
|
| 47 | 42 45 46 | sylancl | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( ( T o. f ) = ( NN X. { 0 } ) <-> A. n e. NN ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) ) |
| 48 | 34 47 | mpbird | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) = ( NN X. { 0 } ) ) |
| 49 | 7 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 50 | 49 | a1i | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 51 | 0cnd | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> 0 e. CC ) |
|
| 52 | 1zzd | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> 1 e. ZZ ) |
|
| 53 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 54 | 53 | lmconst | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ 0 e. CC /\ 1 e. ZZ ) -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
| 55 | 50 51 52 54 | syl3anc | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
| 56 | 48 55 | eqbrtrd | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
| 57 | 9 22 56 | lmmo | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T ` x ) = 0 ) |
| 58 | elnlfn | |- ( T : ~H --> CC -> ( x e. ( null ` T ) <-> ( x e. ~H /\ ( T ` x ) = 0 ) ) ) |
|
| 59 | 23 58 | ax-mp | |- ( x e. ( null ` T ) <-> ( x e. ~H /\ ( T ` x ) = 0 ) ) |
| 60 | 6 57 59 | sylanbrc | |- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ( null ` T ) ) |
| 61 | 60 | gen2 | |- A. f A. x ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ( null ` T ) ) |
| 62 | isch2 | |- ( ( null ` T ) e. CH <-> ( ( null ` T ) e. SH /\ A. f A. x ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ( null ` T ) ) ) ) |
|
| 63 | 3 61 62 | mpbir2an | |- ( null ` T ) e. CH |