This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004) (Revised by Jim Kingdon, 15-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undjudom | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | xpsnen2g | |- ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 3 | 1 2 | mpan | |- ( A e. V -> ( { (/) } X. A ) ~~ A ) |
| 4 | ensym | |- ( ( { (/) } X. A ) ~~ A -> A ~~ ( { (/) } X. A ) ) |
|
| 5 | endom | |- ( A ~~ ( { (/) } X. A ) -> A ~<_ ( { (/) } X. A ) ) |
|
| 6 | 3 4 5 | 3syl | |- ( A e. V -> A ~<_ ( { (/) } X. A ) ) |
| 7 | 1on | |- 1o e. On |
|
| 8 | xpsnen2g | |- ( ( 1o e. On /\ B e. W ) -> ( { 1o } X. B ) ~~ B ) |
|
| 9 | 7 8 | mpan | |- ( B e. W -> ( { 1o } X. B ) ~~ B ) |
| 10 | ensym | |- ( ( { 1o } X. B ) ~~ B -> B ~~ ( { 1o } X. B ) ) |
|
| 11 | endom | |- ( B ~~ ( { 1o } X. B ) -> B ~<_ ( { 1o } X. B ) ) |
|
| 12 | 9 10 11 | 3syl | |- ( B e. W -> B ~<_ ( { 1o } X. B ) ) |
| 13 | xp01disjl | |- ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) |
|
| 14 | undom | |- ( ( ( A ~<_ ( { (/) } X. A ) /\ B ~<_ ( { 1o } X. B ) ) /\ ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) ) -> ( A u. B ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
|
| 15 | 13 14 | mpan2 | |- ( ( A ~<_ ( { (/) } X. A ) /\ B ~<_ ( { 1o } X. B ) ) -> ( A u. B ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 16 | 6 12 15 | syl2an | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 17 | df-dju | |- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
|
| 18 | 16 17 | breqtrrdi | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) ~<_ ( A |_| B ) ) |