This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006) (Proof shortened by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unctb | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A u. B ) ~<_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex | |- ( A ~<_ _om -> A e. _V ) |
|
| 2 | ctex | |- ( B ~<_ _om -> B e. _V ) |
|
| 3 | undjudom | |- ( ( A e. _V /\ B e. _V ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
| 5 | djudom1 | |- ( ( A ~<_ _om /\ B e. _V ) -> ( A |_| B ) ~<_ ( _om |_| B ) ) |
|
| 6 | 2 5 | sylan2 | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A |_| B ) ~<_ ( _om |_| B ) ) |
| 7 | simpr | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> B ~<_ _om ) |
|
| 8 | omex | |- _om e. _V |
|
| 9 | djudom2 | |- ( ( B ~<_ _om /\ _om e. _V ) -> ( _om |_| B ) ~<_ ( _om |_| _om ) ) |
|
| 10 | 7 8 9 | sylancl | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( _om |_| B ) ~<_ ( _om |_| _om ) ) |
| 11 | domtr | |- ( ( ( A |_| B ) ~<_ ( _om |_| B ) /\ ( _om |_| B ) ~<_ ( _om |_| _om ) ) -> ( A |_| B ) ~<_ ( _om |_| _om ) ) |
|
| 12 | 6 10 11 | syl2anc | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A |_| B ) ~<_ ( _om |_| _om ) ) |
| 13 | 8 8 | xpex | |- ( _om X. _om ) e. _V |
| 14 | xp2dju | |- ( 2o X. _om ) = ( _om |_| _om ) |
|
| 15 | ordom | |- Ord _om |
|
| 16 | 2onn | |- 2o e. _om |
|
| 17 | ordelss | |- ( ( Ord _om /\ 2o e. _om ) -> 2o C_ _om ) |
|
| 18 | 15 16 17 | mp2an | |- 2o C_ _om |
| 19 | xpss1 | |- ( 2o C_ _om -> ( 2o X. _om ) C_ ( _om X. _om ) ) |
|
| 20 | 18 19 | ax-mp | |- ( 2o X. _om ) C_ ( _om X. _om ) |
| 21 | 14 20 | eqsstrri | |- ( _om |_| _om ) C_ ( _om X. _om ) |
| 22 | ssdomg | |- ( ( _om X. _om ) e. _V -> ( ( _om |_| _om ) C_ ( _om X. _om ) -> ( _om |_| _om ) ~<_ ( _om X. _om ) ) ) |
|
| 23 | 13 21 22 | mp2 | |- ( _om |_| _om ) ~<_ ( _om X. _om ) |
| 24 | xpomen | |- ( _om X. _om ) ~~ _om |
|
| 25 | domentr | |- ( ( ( _om |_| _om ) ~<_ ( _om X. _om ) /\ ( _om X. _om ) ~~ _om ) -> ( _om |_| _om ) ~<_ _om ) |
|
| 26 | 23 24 25 | mp2an | |- ( _om |_| _om ) ~<_ _om |
| 27 | domtr | |- ( ( ( A |_| B ) ~<_ ( _om |_| _om ) /\ ( _om |_| _om ) ~<_ _om ) -> ( A |_| B ) ~<_ _om ) |
|
| 28 | 12 26 27 | sylancl | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A |_| B ) ~<_ _om ) |
| 29 | domtr | |- ( ( ( A u. B ) ~<_ ( A |_| B ) /\ ( A |_| B ) ~<_ _om ) -> ( A u. B ) ~<_ _om ) |
|
| 30 | 4 28 29 | syl2anc | |- ( ( A ~<_ _om /\ B ~<_ _om ) -> ( A u. B ) ~<_ _om ) |