This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of Enderton p. 143. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dju1en | |- ( ( A e. V /\ -. A e. A ) -> ( A |_| 1o ) ~~ suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg | |- ( A e. V -> A ~~ A ) |
|
| 2 | 1 | adantr | |- ( ( A e. V /\ -. A e. A ) -> A ~~ A ) |
| 3 | ensn1g | |- ( A e. V -> { A } ~~ 1o ) |
|
| 4 | 3 | ensymd | |- ( A e. V -> 1o ~~ { A } ) |
| 5 | 4 | adantr | |- ( ( A e. V /\ -. A e. A ) -> 1o ~~ { A } ) |
| 6 | simpr | |- ( ( A e. V /\ -. A e. A ) -> -. A e. A ) |
|
| 7 | disjsn | |- ( ( A i^i { A } ) = (/) <-> -. A e. A ) |
|
| 8 | 6 7 | sylibr | |- ( ( A e. V /\ -. A e. A ) -> ( A i^i { A } ) = (/) ) |
| 9 | djuenun | |- ( ( A ~~ A /\ 1o ~~ { A } /\ ( A i^i { A } ) = (/) ) -> ( A |_| 1o ) ~~ ( A u. { A } ) ) |
|
| 10 | 2 5 8 9 | syl3anc | |- ( ( A e. V /\ -. A e. A ) -> ( A |_| 1o ) ~~ ( A u. { A } ) ) |
| 11 | df-suc | |- suc A = ( A u. { A } ) |
|
| 12 | 10 11 | breqtrrdi | |- ( ( A e. V /\ -. A e. A ) -> ( A |_| 1o ) ~~ suc A ) |