This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaordr | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A e. B <-> ( A +o C ) e. ( B +o C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaord | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A e. B <-> ( C +o A ) e. ( C +o B ) ) ) |
|
| 2 | nnacom | |- ( ( C e. _om /\ A e. _om ) -> ( C +o A ) = ( A +o C ) ) |
|
| 3 | 2 | ancoms | |- ( ( A e. _om /\ C e. _om ) -> ( C +o A ) = ( A +o C ) ) |
| 4 | 3 | 3adant2 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( C +o A ) = ( A +o C ) ) |
| 5 | nnacom | |- ( ( C e. _om /\ B e. _om ) -> ( C +o B ) = ( B +o C ) ) |
|
| 6 | 5 | ancoms | |- ( ( B e. _om /\ C e. _om ) -> ( C +o B ) = ( B +o C ) ) |
| 7 | 6 | 3adant1 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( C +o B ) = ( B +o C ) ) |
| 8 | 4 7 | eleq12d | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( C +o A ) e. ( C +o B ) <-> ( A +o C ) e. ( B +o C ) ) ) |
| 9 | 1 8 | bitrd | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A e. B <-> ( A +o C ) e. ( B +o C ) ) ) |