This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy of equinumerosity for _om , proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 ) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | domtriom.1 | |- A e. _V |
|
| Assertion | domtriom | |- ( _om ~<_ A <-> -. A ~< _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domtriom.1 | |- A e. _V |
|
| 2 | domnsym | |- ( _om ~<_ A -> -. A ~< _om ) |
|
| 3 | isfinite | |- ( A e. Fin <-> A ~< _om ) |
|
| 4 | eqid | |- { y | ( y C_ A /\ y ~~ ~P n ) } = { y | ( y C_ A /\ y ~~ ~P n ) } |
|
| 5 | fveq2 | |- ( m = n -> ( b ` m ) = ( b ` n ) ) |
|
| 6 | fveq2 | |- ( j = k -> ( b ` j ) = ( b ` k ) ) |
|
| 7 | 6 | cbviunv | |- U_ j e. m ( b ` j ) = U_ k e. m ( b ` k ) |
| 8 | iuneq1 | |- ( m = n -> U_ k e. m ( b ` k ) = U_ k e. n ( b ` k ) ) |
|
| 9 | 7 8 | eqtrid | |- ( m = n -> U_ j e. m ( b ` j ) = U_ k e. n ( b ` k ) ) |
| 10 | 5 9 | difeq12d | |- ( m = n -> ( ( b ` m ) \ U_ j e. m ( b ` j ) ) = ( ( b ` n ) \ U_ k e. n ( b ` k ) ) ) |
| 11 | 10 | cbvmptv | |- ( m e. _om |-> ( ( b ` m ) \ U_ j e. m ( b ` j ) ) ) = ( n e. _om |-> ( ( b ` n ) \ U_ k e. n ( b ` k ) ) ) |
| 12 | 1 4 11 | domtriomlem | |- ( -. A e. Fin -> _om ~<_ A ) |
| 13 | 3 12 | sylnbir | |- ( -. A ~< _om -> _om ~<_ A ) |
| 14 | 2 13 | impbii | |- ( _om ~<_ A <-> -. A ~< _om ) |