This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prdsms . The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsxms.y | |- Y = ( S Xs_ R ) |
|
| prdsxms.s | |- ( ph -> S e. W ) |
||
| prdsxms.i | |- ( ph -> I e. Fin ) |
||
| prdsxms.d | |- D = ( dist ` Y ) |
||
| prdsxms.b | |- B = ( Base ` Y ) |
||
| prdsxms.r | |- ( ph -> R : I --> *MetSp ) |
||
| Assertion | prdsxmslem1 | |- ( ph -> D e. ( *Met ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsxms.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsxms.s | |- ( ph -> S e. W ) |
|
| 3 | prdsxms.i | |- ( ph -> I e. Fin ) |
|
| 4 | prdsxms.d | |- D = ( dist ` Y ) |
|
| 5 | prdsxms.b | |- B = ( Base ` Y ) |
|
| 6 | prdsxms.r | |- ( ph -> R : I --> *MetSp ) |
|
| 7 | eqid | |- ( S Xs_ ( k e. I |-> ( R ` k ) ) ) = ( S Xs_ ( k e. I |-> ( R ` k ) ) ) |
|
| 8 | eqid | |- ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) = ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) |
|
| 9 | eqid | |- ( Base ` ( R ` k ) ) = ( Base ` ( R ` k ) ) |
|
| 10 | eqid | |- ( ( dist ` ( R ` k ) ) |` ( ( Base ` ( R ` k ) ) X. ( Base ` ( R ` k ) ) ) ) = ( ( dist ` ( R ` k ) ) |` ( ( Base ` ( R ` k ) ) X. ( Base ` ( R ` k ) ) ) ) |
|
| 11 | eqid | |- ( dist ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) = ( dist ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) |
|
| 12 | 6 | ffvelcdmda | |- ( ( ph /\ k e. I ) -> ( R ` k ) e. *MetSp ) |
| 13 | 9 10 | xmsxmet | |- ( ( R ` k ) e. *MetSp -> ( ( dist ` ( R ` k ) ) |` ( ( Base ` ( R ` k ) ) X. ( Base ` ( R ` k ) ) ) ) e. ( *Met ` ( Base ` ( R ` k ) ) ) ) |
| 14 | 12 13 | syl | |- ( ( ph /\ k e. I ) -> ( ( dist ` ( R ` k ) ) |` ( ( Base ` ( R ` k ) ) X. ( Base ` ( R ` k ) ) ) ) e. ( *Met ` ( Base ` ( R ` k ) ) ) ) |
| 15 | 7 8 9 10 11 2 3 12 14 | prdsxmet | |- ( ph -> ( dist ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) e. ( *Met ` ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) ) ) |
| 16 | 6 | feqmptd | |- ( ph -> R = ( k e. I |-> ( R ` k ) ) ) |
| 17 | 16 | oveq2d | |- ( ph -> ( S Xs_ R ) = ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) |
| 18 | 1 17 | eqtrid | |- ( ph -> Y = ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) |
| 19 | 18 | fveq2d | |- ( ph -> ( dist ` Y ) = ( dist ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) ) |
| 20 | 4 19 | eqtrid | |- ( ph -> D = ( dist ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) ) |
| 21 | 18 | fveq2d | |- ( ph -> ( Base ` Y ) = ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) ) |
| 22 | 5 21 | eqtrid | |- ( ph -> B = ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) ) |
| 23 | 22 | fveq2d | |- ( ph -> ( *Met ` B ) = ( *Met ` ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) ) ) |
| 24 | 15 20 23 | 3eltr4d | |- ( ph -> D e. ( *Met ` B ) ) |