This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed product structure is an extended metric space when the index set is finite. (Although the extended metric is still valid when the index set is infinite, it no longer agrees with the product topology, which is not metrizable in any case.) (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prdsxms.y | |- Y = ( S Xs_ R ) |
|
| Assertion | prdsxms | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> Y e. *MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsxms.y | |- Y = ( S Xs_ R ) |
|
| 2 | simp1 | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> S e. W ) |
|
| 3 | simp2 | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> I e. Fin ) |
|
| 4 | eqid | |- ( dist ` Y ) = ( dist ` Y ) |
|
| 5 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 6 | simp3 | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> R : I --> *MetSp ) |
|
| 7 | 1 2 3 4 5 6 | prdsxmslem1 | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> ( dist ` Y ) e. ( *Met ` ( Base ` Y ) ) ) |
| 8 | ssid | |- ( Base ` Y ) C_ ( Base ` Y ) |
|
| 9 | xmetres2 | |- ( ( ( dist ` Y ) e. ( *Met ` ( Base ` Y ) ) /\ ( Base ` Y ) C_ ( Base ` Y ) ) -> ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) e. ( *Met ` ( Base ` Y ) ) ) |
|
| 10 | 7 8 9 | sylancl | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) e. ( *Met ` ( Base ` Y ) ) ) |
| 11 | eqid | |- ( TopOpen ` Y ) = ( TopOpen ` Y ) |
|
| 12 | eqid | |- ( Base ` ( R ` k ) ) = ( Base ` ( R ` k ) ) |
|
| 13 | eqid | |- ( ( dist ` ( R ` k ) ) |` ( ( Base ` ( R ` k ) ) X. ( Base ` ( R ` k ) ) ) ) = ( ( dist ` ( R ` k ) ) |` ( ( Base ` ( R ` k ) ) X. ( Base ` ( R ` k ) ) ) ) |
|
| 14 | eqid | |- ( TopOpen ` ( R ` k ) ) = ( TopOpen ` ( R ` k ) ) |
|
| 15 | eqid | |- { x | E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) } = { x | E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) } |
|
| 16 | 1 2 3 4 5 6 11 12 13 14 15 | prdsxmslem2 | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> ( TopOpen ` Y ) = ( MetOpen ` ( dist ` Y ) ) ) |
| 17 | xmetf | |- ( ( dist ` Y ) e. ( *Met ` ( Base ` Y ) ) -> ( dist ` Y ) : ( ( Base ` Y ) X. ( Base ` Y ) ) --> RR* ) |
|
| 18 | ffn | |- ( ( dist ` Y ) : ( ( Base ` Y ) X. ( Base ` Y ) ) --> RR* -> ( dist ` Y ) Fn ( ( Base ` Y ) X. ( Base ` Y ) ) ) |
|
| 19 | fnresdm | |- ( ( dist ` Y ) Fn ( ( Base ` Y ) X. ( Base ` Y ) ) -> ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) = ( dist ` Y ) ) |
|
| 20 | 7 17 18 19 | 4syl | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) = ( dist ` Y ) ) |
| 21 | 20 | fveq2d | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> ( MetOpen ` ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) ) = ( MetOpen ` ( dist ` Y ) ) ) |
| 22 | 16 21 | eqtr4d | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> ( TopOpen ` Y ) = ( MetOpen ` ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) ) ) |
| 23 | eqid | |- ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) = ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) |
|
| 24 | 11 5 23 | isxms2 | |- ( Y e. *MetSp <-> ( ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) e. ( *Met ` ( Base ` Y ) ) /\ ( TopOpen ` Y ) = ( MetOpen ` ( ( dist ` Y ) |` ( ( Base ` Y ) X. ( Base ` Y ) ) ) ) ) ) |
| 25 | 10 22 24 | sylanbrc | |- ( ( S e. W /\ I e. Fin /\ R : I --> *MetSp ) -> Y e. *MetSp ) |