This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istps.a | |- A = ( Base ` K ) |
|
| istps.j | |- J = ( TopOpen ` K ) |
||
| Assertion | istps | |- ( K e. TopSp <-> J e. ( TopOn ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istps.a | |- A = ( Base ` K ) |
|
| 2 | istps.j | |- J = ( TopOpen ` K ) |
|
| 3 | df-topsp | |- TopSp = { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } |
|
| 4 | 3 | eleq2i | |- ( K e. TopSp <-> K e. { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } ) |
| 5 | topontop | |- ( J e. ( TopOn ` A ) -> J e. Top ) |
|
| 6 | 0ntop | |- -. (/) e. Top |
|
| 7 | fvprc | |- ( -. K e. _V -> ( TopOpen ` K ) = (/) ) |
|
| 8 | 2 7 | eqtrid | |- ( -. K e. _V -> J = (/) ) |
| 9 | 8 | eleq1d | |- ( -. K e. _V -> ( J e. Top <-> (/) e. Top ) ) |
| 10 | 6 9 | mtbiri | |- ( -. K e. _V -> -. J e. Top ) |
| 11 | 10 | con4i | |- ( J e. Top -> K e. _V ) |
| 12 | 5 11 | syl | |- ( J e. ( TopOn ` A ) -> K e. _V ) |
| 13 | fveq2 | |- ( f = K -> ( TopOpen ` f ) = ( TopOpen ` K ) ) |
|
| 14 | 13 2 | eqtr4di | |- ( f = K -> ( TopOpen ` f ) = J ) |
| 15 | fveq2 | |- ( f = K -> ( Base ` f ) = ( Base ` K ) ) |
|
| 16 | 15 1 | eqtr4di | |- ( f = K -> ( Base ` f ) = A ) |
| 17 | 16 | fveq2d | |- ( f = K -> ( TopOn ` ( Base ` f ) ) = ( TopOn ` A ) ) |
| 18 | 14 17 | eleq12d | |- ( f = K -> ( ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) <-> J e. ( TopOn ` A ) ) ) |
| 19 | 12 18 | elab3 | |- ( K e. { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } <-> J e. ( TopOn ` A ) ) |
| 20 | 4 19 | bitri | |- ( K e. TopSp <-> J e. ( TopOn ` A ) ) |