This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality, domain and codomain of a class given by the maps-to notation, where B ( x ) is not constant but depends on x . (Contributed by NM, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fmpox.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| Assertion | fmpox | |- ( A. x e. A A. y e. B C e. D <-> F : U_ x e. A ( { x } X. B ) --> D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpox.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | vex | |- z e. _V |
|
| 3 | vex | |- w e. _V |
|
| 4 | 2 3 | op1std | |- ( v = <. z , w >. -> ( 1st ` v ) = z ) |
| 5 | 4 | csbeq1d | |- ( v = <. z , w >. -> [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C = [_ z / x ]_ [_ ( 2nd ` v ) / y ]_ C ) |
| 6 | 2 3 | op2ndd | |- ( v = <. z , w >. -> ( 2nd ` v ) = w ) |
| 7 | 6 | csbeq1d | |- ( v = <. z , w >. -> [_ ( 2nd ` v ) / y ]_ C = [_ w / y ]_ C ) |
| 8 | 7 | csbeq2dv | |- ( v = <. z , w >. -> [_ z / x ]_ [_ ( 2nd ` v ) / y ]_ C = [_ z / x ]_ [_ w / y ]_ C ) |
| 9 | 5 8 | eqtrd | |- ( v = <. z , w >. -> [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C = [_ z / x ]_ [_ w / y ]_ C ) |
| 10 | 9 | eleq1d | |- ( v = <. z , w >. -> ( [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C e. D <-> [_ z / x ]_ [_ w / y ]_ C e. D ) ) |
| 11 | 10 | raliunxp | |- ( A. v e. U_ z e. A ( { z } X. [_ z / x ]_ B ) [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C e. D <-> A. z e. A A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D ) |
| 12 | nfv | |- F/ z ( ( x e. A /\ y e. B ) /\ v = C ) |
|
| 13 | nfv | |- F/ w ( ( x e. A /\ y e. B ) /\ v = C ) |
|
| 14 | nfv | |- F/ x z e. A |
|
| 15 | nfcsb1v | |- F/_ x [_ z / x ]_ B |
|
| 16 | 15 | nfcri | |- F/ x w e. [_ z / x ]_ B |
| 17 | 14 16 | nfan | |- F/ x ( z e. A /\ w e. [_ z / x ]_ B ) |
| 18 | nfcsb1v | |- F/_ x [_ z / x ]_ [_ w / y ]_ C |
|
| 19 | 18 | nfeq2 | |- F/ x v = [_ z / x ]_ [_ w / y ]_ C |
| 20 | 17 19 | nfan | |- F/ x ( ( z e. A /\ w e. [_ z / x ]_ B ) /\ v = [_ z / x ]_ [_ w / y ]_ C ) |
| 21 | nfv | |- F/ y ( z e. A /\ w e. [_ z / x ]_ B ) |
|
| 22 | nfcv | |- F/_ y z |
|
| 23 | nfcsb1v | |- F/_ y [_ w / y ]_ C |
|
| 24 | 22 23 | nfcsbw | |- F/_ y [_ z / x ]_ [_ w / y ]_ C |
| 25 | 24 | nfeq2 | |- F/ y v = [_ z / x ]_ [_ w / y ]_ C |
| 26 | 21 25 | nfan | |- F/ y ( ( z e. A /\ w e. [_ z / x ]_ B ) /\ v = [_ z / x ]_ [_ w / y ]_ C ) |
| 27 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 28 | 27 | adantr | |- ( ( x = z /\ y = w ) -> ( x e. A <-> z e. A ) ) |
| 29 | eleq1w | |- ( y = w -> ( y e. B <-> w e. B ) ) |
|
| 30 | csbeq1a | |- ( x = z -> B = [_ z / x ]_ B ) |
|
| 31 | 30 | eleq2d | |- ( x = z -> ( w e. B <-> w e. [_ z / x ]_ B ) ) |
| 32 | 29 31 | sylan9bbr | |- ( ( x = z /\ y = w ) -> ( y e. B <-> w e. [_ z / x ]_ B ) ) |
| 33 | 28 32 | anbi12d | |- ( ( x = z /\ y = w ) -> ( ( x e. A /\ y e. B ) <-> ( z e. A /\ w e. [_ z / x ]_ B ) ) ) |
| 34 | csbeq1a | |- ( y = w -> C = [_ w / y ]_ C ) |
|
| 35 | csbeq1a | |- ( x = z -> [_ w / y ]_ C = [_ z / x ]_ [_ w / y ]_ C ) |
|
| 36 | 34 35 | sylan9eqr | |- ( ( x = z /\ y = w ) -> C = [_ z / x ]_ [_ w / y ]_ C ) |
| 37 | 36 | eqeq2d | |- ( ( x = z /\ y = w ) -> ( v = C <-> v = [_ z / x ]_ [_ w / y ]_ C ) ) |
| 38 | 33 37 | anbi12d | |- ( ( x = z /\ y = w ) -> ( ( ( x e. A /\ y e. B ) /\ v = C ) <-> ( ( z e. A /\ w e. [_ z / x ]_ B ) /\ v = [_ z / x ]_ [_ w / y ]_ C ) ) ) |
| 39 | 12 13 20 26 38 | cbvoprab12 | |- { <. <. x , y >. , v >. | ( ( x e. A /\ y e. B ) /\ v = C ) } = { <. <. z , w >. , v >. | ( ( z e. A /\ w e. [_ z / x ]_ B ) /\ v = [_ z / x ]_ [_ w / y ]_ C ) } |
| 40 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , v >. | ( ( x e. A /\ y e. B ) /\ v = C ) } |
|
| 41 | df-mpo | |- ( z e. A , w e. [_ z / x ]_ B |-> [_ z / x ]_ [_ w / y ]_ C ) = { <. <. z , w >. , v >. | ( ( z e. A /\ w e. [_ z / x ]_ B ) /\ v = [_ z / x ]_ [_ w / y ]_ C ) } |
|
| 42 | 39 40 41 | 3eqtr4i | |- ( x e. A , y e. B |-> C ) = ( z e. A , w e. [_ z / x ]_ B |-> [_ z / x ]_ [_ w / y ]_ C ) |
| 43 | 9 | mpomptx | |- ( v e. U_ z e. A ( { z } X. [_ z / x ]_ B ) |-> [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C ) = ( z e. A , w e. [_ z / x ]_ B |-> [_ z / x ]_ [_ w / y ]_ C ) |
| 44 | 42 1 43 | 3eqtr4i | |- F = ( v e. U_ z e. A ( { z } X. [_ z / x ]_ B ) |-> [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C ) |
| 45 | 44 | fmpt | |- ( A. v e. U_ z e. A ( { z } X. [_ z / x ]_ B ) [_ ( 1st ` v ) / x ]_ [_ ( 2nd ` v ) / y ]_ C e. D <-> F : U_ z e. A ( { z } X. [_ z / x ]_ B ) --> D ) |
| 46 | 11 45 | bitr3i | |- ( A. z e. A A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D <-> F : U_ z e. A ( { z } X. [_ z / x ]_ B ) --> D ) |
| 47 | nfv | |- F/ z A. y e. B C e. D |
|
| 48 | 18 | nfel1 | |- F/ x [_ z / x ]_ [_ w / y ]_ C e. D |
| 49 | 15 48 | nfralw | |- F/ x A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D |
| 50 | nfv | |- F/ w C e. D |
|
| 51 | 23 | nfel1 | |- F/ y [_ w / y ]_ C e. D |
| 52 | 34 | eleq1d | |- ( y = w -> ( C e. D <-> [_ w / y ]_ C e. D ) ) |
| 53 | 50 51 52 | cbvralw | |- ( A. y e. B C e. D <-> A. w e. B [_ w / y ]_ C e. D ) |
| 54 | 35 | eleq1d | |- ( x = z -> ( [_ w / y ]_ C e. D <-> [_ z / x ]_ [_ w / y ]_ C e. D ) ) |
| 55 | 30 54 | raleqbidv | |- ( x = z -> ( A. w e. B [_ w / y ]_ C e. D <-> A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D ) ) |
| 56 | 53 55 | bitrid | |- ( x = z -> ( A. y e. B C e. D <-> A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D ) ) |
| 57 | 47 49 56 | cbvralw | |- ( A. x e. A A. y e. B C e. D <-> A. z e. A A. w e. [_ z / x ]_ B [_ z / x ]_ [_ w / y ]_ C e. D ) |
| 58 | nfcv | |- F/_ z ( { x } X. B ) |
|
| 59 | nfcv | |- F/_ x { z } |
|
| 60 | 59 15 | nfxp | |- F/_ x ( { z } X. [_ z / x ]_ B ) |
| 61 | sneq | |- ( x = z -> { x } = { z } ) |
|
| 62 | 61 30 | xpeq12d | |- ( x = z -> ( { x } X. B ) = ( { z } X. [_ z / x ]_ B ) ) |
| 63 | 58 60 62 | cbviun | |- U_ x e. A ( { x } X. B ) = U_ z e. A ( { z } X. [_ z / x ]_ B ) |
| 64 | 63 | feq2i | |- ( F : U_ x e. A ( { x } X. B ) --> D <-> F : U_ z e. A ( { z } X. [_ z / x ]_ B ) --> D ) |
| 65 | 46 57 64 | 3bitr4i | |- ( A. x e. A A. y e. B C e. D <-> F : U_ x e. A ( { x } X. B ) --> D ) |