This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ball is nonempty iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xbln0 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( P ( ball ` D ) R ) =/= (/) <-> 0 < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( ( P ( ball ` D ) R ) =/= (/) <-> E. x x e. ( P ( ball ` D ) R ) ) |
|
| 2 | elbl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
|
| 3 | xmetge0 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ x e. X ) -> 0 <_ ( P D x ) ) |
|
| 4 | 3 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ x e. X ) -> 0 <_ ( P D x ) ) |
| 5 | 4 | 3adantl3 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. X ) -> 0 <_ ( P D x ) ) |
| 6 | 0xr | |- 0 e. RR* |
|
| 7 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ x e. X ) -> ( P D x ) e. RR* ) |
|
| 8 | 7 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ x e. X ) -> ( P D x ) e. RR* ) |
| 9 | 8 | 3adantl3 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. X ) -> ( P D x ) e. RR* ) |
| 10 | simpl3 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. X ) -> R e. RR* ) |
|
| 11 | xrlelttr | |- ( ( 0 e. RR* /\ ( P D x ) e. RR* /\ R e. RR* ) -> ( ( 0 <_ ( P D x ) /\ ( P D x ) < R ) -> 0 < R ) ) |
|
| 12 | 6 9 10 11 | mp3an2i | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. X ) -> ( ( 0 <_ ( P D x ) /\ ( P D x ) < R ) -> 0 < R ) ) |
| 13 | 5 12 | mpand | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. X ) -> ( ( P D x ) < R -> 0 < R ) ) |
| 14 | 13 | expimpd | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( x e. X /\ ( P D x ) < R ) -> 0 < R ) ) |
| 15 | 2 14 | sylbid | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) -> 0 < R ) ) |
| 16 | 15 | exlimdv | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( E. x x e. ( P ( ball ` D ) R ) -> 0 < R ) ) |
| 17 | 1 16 | biimtrid | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( P ( ball ` D ) R ) =/= (/) -> 0 < R ) ) |
| 18 | xblcntr | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ ( R e. RR* /\ 0 < R ) ) -> P e. ( P ( ball ` D ) R ) ) |
|
| 19 | 18 | ne0d | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ ( R e. RR* /\ 0 < R ) ) -> ( P ( ball ` D ) R ) =/= (/) ) |
| 20 | 19 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ 0 < R ) ) -> ( P ( ball ` D ) R ) =/= (/) ) |
| 21 | 20 | expr | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ R e. RR* ) -> ( 0 < R -> ( P ( ball ` D ) R ) =/= (/) ) ) |
| 22 | 21 | 3impa | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( 0 < R -> ( P ( ball ` D ) R ) =/= (/) ) ) |
| 23 | 17 22 | impbid | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( ( P ( ball ` D ) R ) =/= (/) <-> 0 < R ) ) |