This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvixpv.1 | |- ( x = y -> B = C ) |
|
| Assertion | cbvixpv | |- X_ x e. A B = X_ y e. A C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvixpv.1 | |- ( x = y -> B = C ) |
|
| 2 | fveq2 | |- ( x = y -> ( z ` x ) = ( z ` y ) ) |
|
| 3 | 2 1 | eleq12d | |- ( x = y -> ( ( z ` x ) e. B <-> ( z ` y ) e. C ) ) |
| 4 | 3 | cbvralvw | |- ( A. x e. A ( z ` x ) e. B <-> A. y e. A ( z ` y ) e. C ) |
| 5 | 4 | anbi2i | |- ( ( z Fn A /\ A. x e. A ( z ` x ) e. B ) <-> ( z Fn A /\ A. y e. A ( z ` y ) e. C ) ) |
| 6 | 5 | abbii | |- { z | ( z Fn A /\ A. x e. A ( z ` x ) e. B ) } = { z | ( z Fn A /\ A. y e. A ( z ` y ) e. C ) } |
| 7 | dfixp | |- X_ x e. A B = { z | ( z Fn A /\ A. x e. A ( z ` x ) e. B ) } |
|
| 8 | dfixp | |- X_ y e. A C = { z | ( z Fn A /\ A. y e. A ( z ` y ) e. C ) } |
|
| 9 | 6 7 8 | 3eqtr4i | |- X_ x e. A B = X_ y e. A C |