This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the base has projections closed in the factors. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| prdsbasmpt2.b | |- B = ( Base ` Y ) |
||
| prdsbasmpt2.s | |- ( ph -> S e. V ) |
||
| prdsbasmpt2.i | |- ( ph -> I e. W ) |
||
| prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) |
||
| prdsbasmpt2.k | |- K = ( Base ` R ) |
||
| prdsbascl.f | |- ( ph -> F e. B ) |
||
| Assertion | prdsbascl | |- ( ph -> A. x e. I ( F ` x ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| 2 | prdsbasmpt2.b | |- B = ( Base ` Y ) |
|
| 3 | prdsbasmpt2.s | |- ( ph -> S e. V ) |
|
| 4 | prdsbasmpt2.i | |- ( ph -> I e. W ) |
|
| 5 | prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) |
|
| 6 | prdsbasmpt2.k | |- K = ( Base ` R ) |
|
| 7 | prdsbascl.f | |- ( ph -> F e. B ) |
|
| 8 | eqid | |- ( x e. I |-> R ) = ( x e. I |-> R ) |
|
| 9 | 8 | fnmpt | |- ( A. x e. I R e. X -> ( x e. I |-> R ) Fn I ) |
| 10 | 5 9 | syl | |- ( ph -> ( x e. I |-> R ) Fn I ) |
| 11 | 1 2 3 4 10 7 | prdsbasfn | |- ( ph -> F Fn I ) |
| 12 | dffn5 | |- ( F Fn I <-> F = ( x e. I |-> ( F ` x ) ) ) |
|
| 13 | 11 12 | sylib | |- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
| 14 | 13 7 | eqeltrrd | |- ( ph -> ( x e. I |-> ( F ` x ) ) e. B ) |
| 15 | 1 2 3 4 5 6 | prdsbasmpt2 | |- ( ph -> ( ( x e. I |-> ( F ` x ) ) e. B <-> A. x e. I ( F ` x ) e. K ) ) |
| 16 | 14 15 | mpbid | |- ( ph -> A. x e. I ( F ` x ) e. K ) |