This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ssab

Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion ssab
|- ( A C_ { x | ph } <-> A. x ( x e. A -> ph ) )

Proof

Step Hyp Ref Expression
1 abid2
 |-  { x | x e. A } = A
2 1 sseq1i
 |-  ( { x | x e. A } C_ { x | ph } <-> A C_ { x | ph } )
3 ss2ab
 |-  ( { x | x e. A } C_ { x | ph } <-> A. x ( x e. A -> ph ) )
4 2 3 bitr3i
 |-  ( A C_ { x | ph } <-> A. x ( x e. A -> ph ) )