This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007) (Revised by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2basgen | |- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> ( topGen ` B ) = ( topGen ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( topGen ` B ) e. _V |
|
| 2 | 1 | ssex | |- ( C C_ ( topGen ` B ) -> C e. _V ) |
| 3 | simpl | |- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> B C_ C ) |
|
| 4 | tgss | |- ( ( C e. _V /\ B C_ C ) -> ( topGen ` B ) C_ ( topGen ` C ) ) |
|
| 5 | 2 3 4 | syl2an2 | |- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> ( topGen ` B ) C_ ( topGen ` C ) ) |
| 6 | simpr | |- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> C C_ ( topGen ` B ) ) |
|
| 7 | ssexg | |- ( ( B C_ C /\ C e. _V ) -> B e. _V ) |
|
| 8 | 2 7 | sylan2 | |- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> B e. _V ) |
| 9 | tgss3 | |- ( ( C e. _V /\ B e. _V ) -> ( ( topGen ` C ) C_ ( topGen ` B ) <-> C C_ ( topGen ` B ) ) ) |
|
| 10 | 2 8 9 | syl2an2 | |- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> ( ( topGen ` C ) C_ ( topGen ` B ) <-> C C_ ( topGen ` B ) ) ) |
| 11 | 6 10 | mpbird | |- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> ( topGen ` C ) C_ ( topGen ` B ) ) |
| 12 | 5 11 | eqssd | |- ( ( B C_ C /\ C C_ ( topGen ` B ) ) -> ( topGen ` B ) = ( topGen ` C ) ) |