This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubass | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) -h C ) = ( A -h ( B +h C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn | |- -u 1 e. CC |
|
| 2 | hvmulcl | |- ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) |
|
| 3 | 1 2 | mpan | |- ( B e. ~H -> ( -u 1 .h B ) e. ~H ) |
| 4 | hvaddsubass | |- ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H /\ C e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) -h C ) = ( A +h ( ( -u 1 .h B ) -h C ) ) ) |
|
| 5 | 3 4 | syl3an2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h ( -u 1 .h B ) ) -h C ) = ( A +h ( ( -u 1 .h B ) -h C ) ) ) |
| 6 | hvsubval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
|
| 7 | 6 | 3adant3 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
| 8 | 7 | oveq1d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) -h C ) = ( ( A +h ( -u 1 .h B ) ) -h C ) ) |
| 9 | simp1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> A e. ~H ) |
|
| 10 | hvaddcl | |- ( ( B e. ~H /\ C e. ~H ) -> ( B +h C ) e. ~H ) |
|
| 11 | 10 | 3adant1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B +h C ) e. ~H ) |
| 12 | hvsubval | |- ( ( A e. ~H /\ ( B +h C ) e. ~H ) -> ( A -h ( B +h C ) ) = ( A +h ( -u 1 .h ( B +h C ) ) ) ) |
|
| 13 | 9 11 12 | syl2anc | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A -h ( B +h C ) ) = ( A +h ( -u 1 .h ( B +h C ) ) ) ) |
| 14 | hvsubval | |- ( ( ( -u 1 .h B ) e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) -h C ) = ( ( -u 1 .h B ) +h ( -u 1 .h C ) ) ) |
|
| 15 | 3 14 | sylan | |- ( ( B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) -h C ) = ( ( -u 1 .h B ) +h ( -u 1 .h C ) ) ) |
| 16 | 15 | 3adant1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) -h C ) = ( ( -u 1 .h B ) +h ( -u 1 .h C ) ) ) |
| 17 | ax-hvdistr1 | |- ( ( -u 1 e. CC /\ B e. ~H /\ C e. ~H ) -> ( -u 1 .h ( B +h C ) ) = ( ( -u 1 .h B ) +h ( -u 1 .h C ) ) ) |
|
| 18 | 1 17 | mp3an1 | |- ( ( B e. ~H /\ C e. ~H ) -> ( -u 1 .h ( B +h C ) ) = ( ( -u 1 .h B ) +h ( -u 1 .h C ) ) ) |
| 19 | 18 | 3adant1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( -u 1 .h ( B +h C ) ) = ( ( -u 1 .h B ) +h ( -u 1 .h C ) ) ) |
| 20 | 16 19 | eqtr4d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) -h C ) = ( -u 1 .h ( B +h C ) ) ) |
| 21 | 20 | oveq2d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( ( -u 1 .h B ) -h C ) ) = ( A +h ( -u 1 .h ( B +h C ) ) ) ) |
| 22 | 13 21 | eqtr4d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A -h ( B +h C ) ) = ( A +h ( ( -u 1 .h B ) -h C ) ) ) |
| 23 | 5 8 22 | 3eqtr4d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) -h C ) = ( A -h ( B +h C ) ) ) |