This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition for an inner product to be real. (Contributed by NM, 2-Jul-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hire | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( A .ih B ) = ( B .ih A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hicl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) e. CC ) |
|
| 2 | cjreb | |- ( ( A .ih B ) e. CC -> ( ( A .ih B ) e. RR <-> ( * ` ( A .ih B ) ) = ( A .ih B ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( * ` ( A .ih B ) ) = ( A .ih B ) ) ) |
| 4 | eqcom | |- ( ( * ` ( A .ih B ) ) = ( A .ih B ) <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) |
|
| 5 | 3 4 | bitrdi | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) ) |
| 6 | ax-his1 | |- ( ( B e. ~H /\ A e. ~H ) -> ( B .ih A ) = ( * ` ( A .ih B ) ) ) |
|
| 7 | 6 | ancoms | |- ( ( A e. ~H /\ B e. ~H ) -> ( B .ih A ) = ( * ` ( A .ih B ) ) ) |
| 8 | 7 | eqeq2d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = ( B .ih A ) <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) ) |
| 9 | 5 8 | bitr4d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( A .ih B ) = ( B .ih A ) ) ) |