This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection Theorem: Any Hilbert space vector A can be decomposed uniquely into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102 (existence part). (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjhth | |- ( H e. CH -> ( H +H ( _|_ ` H ) ) = ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh | |- ( H e. CH -> H e. SH ) |
|
| 2 | shocsh | |- ( H e. SH -> ( _|_ ` H ) e. SH ) |
|
| 3 | shsss | |- ( ( H e. SH /\ ( _|_ ` H ) e. SH ) -> ( H +H ( _|_ ` H ) ) C_ ~H ) |
|
| 4 | 1 2 3 | syl2anc2 | |- ( H e. CH -> ( H +H ( _|_ ` H ) ) C_ ~H ) |
| 5 | fveq2 | |- ( H = if ( H e. CH , H , ~H ) -> ( _|_ ` H ) = ( _|_ ` if ( H e. CH , H , ~H ) ) ) |
|
| 6 | 5 | rexeqdv | |- ( H = if ( H e. CH , H , ~H ) -> ( E. z e. ( _|_ ` H ) x = ( y +h z ) <-> E. z e. ( _|_ ` if ( H e. CH , H , ~H ) ) x = ( y +h z ) ) ) |
| 7 | 6 | rexeqbi1dv | |- ( H = if ( H e. CH , H , ~H ) -> ( E. y e. H E. z e. ( _|_ ` H ) x = ( y +h z ) <-> E. y e. if ( H e. CH , H , ~H ) E. z e. ( _|_ ` if ( H e. CH , H , ~H ) ) x = ( y +h z ) ) ) |
| 8 | 7 | imbi2d | |- ( H = if ( H e. CH , H , ~H ) -> ( ( x e. ~H -> E. y e. H E. z e. ( _|_ ` H ) x = ( y +h z ) ) <-> ( x e. ~H -> E. y e. if ( H e. CH , H , ~H ) E. z e. ( _|_ ` if ( H e. CH , H , ~H ) ) x = ( y +h z ) ) ) ) |
| 9 | ifchhv | |- if ( H e. CH , H , ~H ) e. CH |
|
| 10 | id | |- ( x e. ~H -> x e. ~H ) |
|
| 11 | 9 10 | pjhthlem2 | |- ( x e. ~H -> E. y e. if ( H e. CH , H , ~H ) E. z e. ( _|_ ` if ( H e. CH , H , ~H ) ) x = ( y +h z ) ) |
| 12 | 8 11 | dedth | |- ( H e. CH -> ( x e. ~H -> E. y e. H E. z e. ( _|_ ` H ) x = ( y +h z ) ) ) |
| 13 | shsel | |- ( ( H e. SH /\ ( _|_ ` H ) e. SH ) -> ( x e. ( H +H ( _|_ ` H ) ) <-> E. y e. H E. z e. ( _|_ ` H ) x = ( y +h z ) ) ) |
|
| 14 | 1 2 13 | syl2anc2 | |- ( H e. CH -> ( x e. ( H +H ( _|_ ` H ) ) <-> E. y e. H E. z e. ( _|_ ` H ) x = ( y +h z ) ) ) |
| 15 | 12 14 | sylibrd | |- ( H e. CH -> ( x e. ~H -> x e. ( H +H ( _|_ ` H ) ) ) ) |
| 16 | 15 | ssrdv | |- ( H e. CH -> ~H C_ ( H +H ( _|_ ` H ) ) ) |
| 17 | 4 16 | eqssd | |- ( H e. CH -> ( H +H ( _|_ ` H ) ) = ~H ) |