This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pjhth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjhth.1 | |- H e. CH |
|
| pjhth.2 | |- ( ph -> A e. ~H ) |
||
| Assertion | pjhthlem2 | |- ( ph -> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhth.1 | |- H e. CH |
|
| 2 | pjhth.2 | |- ( ph -> A e. ~H ) |
|
| 3 | 2 | adantr | |- ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> A e. ~H ) |
| 4 | 1 | cheli | |- ( x e. H -> x e. ~H ) |
| 5 | 4 | ad2antrl | |- ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> x e. ~H ) |
| 6 | hvsubcl | |- ( ( A e. ~H /\ x e. ~H ) -> ( A -h x ) e. ~H ) |
|
| 7 | 3 5 6 | syl2anc | |- ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> ( A -h x ) e. ~H ) |
| 8 | 3 | adantr | |- ( ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) /\ y e. H ) -> A e. ~H ) |
| 9 | simplrl | |- ( ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) /\ y e. H ) -> x e. H ) |
|
| 10 | simpr | |- ( ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) /\ y e. H ) -> y e. H ) |
|
| 11 | simplrr | |- ( ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) /\ y e. H ) -> A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) |
|
| 12 | eqid | |- ( ( ( A -h x ) .ih y ) / ( ( y .ih y ) + 1 ) ) = ( ( ( A -h x ) .ih y ) / ( ( y .ih y ) + 1 ) ) |
|
| 13 | 1 8 9 10 11 12 | pjhthlem1 | |- ( ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) /\ y e. H ) -> ( ( A -h x ) .ih y ) = 0 ) |
| 14 | 13 | ralrimiva | |- ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> A. y e. H ( ( A -h x ) .ih y ) = 0 ) |
| 15 | 1 | chshii | |- H e. SH |
| 16 | shocel | |- ( H e. SH -> ( ( A -h x ) e. ( _|_ ` H ) <-> ( ( A -h x ) e. ~H /\ A. y e. H ( ( A -h x ) .ih y ) = 0 ) ) ) |
|
| 17 | 15 16 | ax-mp | |- ( ( A -h x ) e. ( _|_ ` H ) <-> ( ( A -h x ) e. ~H /\ A. y e. H ( ( A -h x ) .ih y ) = 0 ) ) |
| 18 | 7 14 17 | sylanbrc | |- ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> ( A -h x ) e. ( _|_ ` H ) ) |
| 19 | hvpncan3 | |- ( ( x e. ~H /\ A e. ~H ) -> ( x +h ( A -h x ) ) = A ) |
|
| 20 | 5 3 19 | syl2anc | |- ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> ( x +h ( A -h x ) ) = A ) |
| 21 | 20 | eqcomd | |- ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> A = ( x +h ( A -h x ) ) ) |
| 22 | oveq2 | |- ( y = ( A -h x ) -> ( x +h y ) = ( x +h ( A -h x ) ) ) |
|
| 23 | 22 | rspceeqv | |- ( ( ( A -h x ) e. ( _|_ ` H ) /\ A = ( x +h ( A -h x ) ) ) -> E. y e. ( _|_ ` H ) A = ( x +h y ) ) |
| 24 | 18 21 23 | syl2anc | |- ( ( ph /\ ( x e. H /\ A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) ) -> E. y e. ( _|_ ` H ) A = ( x +h y ) ) |
| 25 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
|
| 26 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 27 | 26 | hhvs | |- -h = ( -v ` <. <. +h , .h >. , normh >. ) |
| 28 | 26 | hhnm | |- normh = ( normCV ` <. <. +h , .h >. , normh >. ) |
| 29 | eqid | |- <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 30 | 29 15 | hhssba | |- H = ( BaseSet ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
| 31 | 26 | hhph | |- <. <. +h , .h >. , normh >. e. CPreHilOLD |
| 32 | 31 | a1i | |- ( ph -> <. <. +h , .h >. , normh >. e. CPreHilOLD ) |
| 33 | 26 29 | hhsst | |- ( H e. SH -> <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( SubSp ` <. <. +h , .h >. , normh >. ) ) |
| 34 | 15 33 | ax-mp | |- <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( SubSp ` <. <. +h , .h >. , normh >. ) |
| 35 | 29 1 | hhssbnOLD | |- <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. CBan |
| 36 | elin | |- ( <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( ( SubSp ` <. <. +h , .h >. , normh >. ) i^i CBan ) <-> ( <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( SubSp ` <. <. +h , .h >. , normh >. ) /\ <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. CBan ) ) |
|
| 37 | 34 35 36 | mpbir2an | |- <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( ( SubSp ` <. <. +h , .h >. , normh >. ) i^i CBan ) |
| 38 | 37 | a1i | |- ( ph -> <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. e. ( ( SubSp ` <. <. +h , .h >. , normh >. ) i^i CBan ) ) |
| 39 | 25 27 28 30 32 38 2 | minveco | |- ( ph -> E! x e. H A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) |
| 40 | reurex | |- ( E! x e. H A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) -> E. x e. H A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) |
|
| 41 | 39 40 | syl | |- ( ph -> E. x e. H A. z e. H ( normh ` ( A -h x ) ) <_ ( normh ` ( A -h z ) ) ) |
| 42 | 24 41 | reximddv | |- ( ph -> E. x e. H E. y e. ( _|_ ` H ) A = ( x +h y ) ) |