This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move scalar multiplication to outside of inner product. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his35 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A .h C ) .ih ( B .h D ) ) = ( ( A x. ( * ` B ) ) x. ( C .ih D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | his5 | |- ( ( B e. CC /\ C e. ~H /\ D e. ~H ) -> ( C .ih ( B .h D ) ) = ( ( * ` B ) x. ( C .ih D ) ) ) |
|
| 2 | 1 | 3expb | |- ( ( B e. CC /\ ( C e. ~H /\ D e. ~H ) ) -> ( C .ih ( B .h D ) ) = ( ( * ` B ) x. ( C .ih D ) ) ) |
| 3 | 2 | adantll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( C .ih ( B .h D ) ) = ( ( * ` B ) x. ( C .ih D ) ) ) |
| 4 | 3 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( A x. ( C .ih ( B .h D ) ) ) = ( A x. ( ( * ` B ) x. ( C .ih D ) ) ) ) |
| 5 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> A e. CC ) |
|
| 6 | simprl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> C e. ~H ) |
|
| 7 | hvmulcl | |- ( ( B e. CC /\ D e. ~H ) -> ( B .h D ) e. ~H ) |
|
| 8 | 7 | ad2ant2l | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( B .h D ) e. ~H ) |
| 9 | ax-his3 | |- ( ( A e. CC /\ C e. ~H /\ ( B .h D ) e. ~H ) -> ( ( A .h C ) .ih ( B .h D ) ) = ( A x. ( C .ih ( B .h D ) ) ) ) |
|
| 10 | 5 6 8 9 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A .h C ) .ih ( B .h D ) ) = ( A x. ( C .ih ( B .h D ) ) ) ) |
| 11 | cjcl | |- ( B e. CC -> ( * ` B ) e. CC ) |
|
| 12 | 11 | ad2antlr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( * ` B ) e. CC ) |
| 13 | hicl | |- ( ( C e. ~H /\ D e. ~H ) -> ( C .ih D ) e. CC ) |
|
| 14 | 13 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( C .ih D ) e. CC ) |
| 15 | 5 12 14 | mulassd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A x. ( * ` B ) ) x. ( C .ih D ) ) = ( A x. ( ( * ` B ) x. ( C .ih D ) ) ) ) |
| 16 | 4 10 15 | 3eqtr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A .h C ) .ih ( B .h D ) ) = ( ( A x. ( * ` B ) ) x. ( C .ih D ) ) ) |