This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. Lemma 3.1(S5) of Beran p. 95. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his5 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( A .h C ) ) = ( ( * ` A ) x. ( B .ih C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | |- ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
|
| 2 | ax-his1 | |- ( ( B e. ~H /\ ( A .h C ) e. ~H ) -> ( B .ih ( A .h C ) ) = ( * ` ( ( A .h C ) .ih B ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( B e. ~H /\ ( A e. CC /\ C e. ~H ) ) -> ( B .ih ( A .h C ) ) = ( * ` ( ( A .h C ) .ih B ) ) ) |
| 4 | 3 | 3impb | |- ( ( B e. ~H /\ A e. CC /\ C e. ~H ) -> ( B .ih ( A .h C ) ) = ( * ` ( ( A .h C ) .ih B ) ) ) |
| 5 | 4 | 3com12 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( A .h C ) ) = ( * ` ( ( A .h C ) .ih B ) ) ) |
| 6 | ax-his3 | |- ( ( A e. CC /\ C e. ~H /\ B e. ~H ) -> ( ( A .h C ) .ih B ) = ( A x. ( C .ih B ) ) ) |
|
| 7 | 6 | 3com23 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( A .h C ) .ih B ) = ( A x. ( C .ih B ) ) ) |
| 8 | 7 | fveq2d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( * ` ( ( A .h C ) .ih B ) ) = ( * ` ( A x. ( C .ih B ) ) ) ) |
| 9 | hicl | |- ( ( C e. ~H /\ B e. ~H ) -> ( C .ih B ) e. CC ) |
|
| 10 | cjmul | |- ( ( A e. CC /\ ( C .ih B ) e. CC ) -> ( * ` ( A x. ( C .ih B ) ) ) = ( ( * ` A ) x. ( * ` ( C .ih B ) ) ) ) |
|
| 11 | 9 10 | sylan2 | |- ( ( A e. CC /\ ( C e. ~H /\ B e. ~H ) ) -> ( * ` ( A x. ( C .ih B ) ) ) = ( ( * ` A ) x. ( * ` ( C .ih B ) ) ) ) |
| 12 | 11 | 3impb | |- ( ( A e. CC /\ C e. ~H /\ B e. ~H ) -> ( * ` ( A x. ( C .ih B ) ) ) = ( ( * ` A ) x. ( * ` ( C .ih B ) ) ) ) |
| 13 | 12 | 3com23 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( * ` ( A x. ( C .ih B ) ) ) = ( ( * ` A ) x. ( * ` ( C .ih B ) ) ) ) |
| 14 | ax-his1 | |- ( ( B e. ~H /\ C e. ~H ) -> ( B .ih C ) = ( * ` ( C .ih B ) ) ) |
|
| 15 | 14 | 3adant1 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih C ) = ( * ` ( C .ih B ) ) ) |
| 16 | 15 | oveq2d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( * ` A ) x. ( B .ih C ) ) = ( ( * ` A ) x. ( * ` ( C .ih B ) ) ) ) |
| 17 | 13 16 | eqtr4d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( * ` ( A x. ( C .ih B ) ) ) = ( ( * ` A ) x. ( B .ih C ) ) ) |
| 18 | 5 8 17 | 3eqtrd | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( B .ih ( A .h C ) ) = ( ( * ` A ) x. ( B .ih C ) ) ) |