This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014) (Proof shortened by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolicc.1 | |- ( ph -> A e. RR ) |
|
| ovolicc.2 | |- ( ph -> B e. RR ) |
||
| ovolicc.3 | |- ( ph -> A <_ B ) |
||
| ovolicc1.4 | |- G = ( n e. NN |-> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
||
| Assertion | ovolicc1 | |- ( ph -> ( vol* ` ( A [,] B ) ) <_ ( B - A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc.1 | |- ( ph -> A e. RR ) |
|
| 2 | ovolicc.2 | |- ( ph -> B e. RR ) |
|
| 3 | ovolicc.3 | |- ( ph -> A <_ B ) |
|
| 4 | ovolicc1.4 | |- G = ( n e. NN |-> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
|
| 5 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 6 | 1 2 5 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 7 | ovolcl | |- ( ( A [,] B ) C_ RR -> ( vol* ` ( A [,] B ) ) e. RR* ) |
|
| 8 | 6 7 | syl | |- ( ph -> ( vol* ` ( A [,] B ) ) e. RR* ) |
| 9 | df-br | |- ( A <_ B <-> <. A , B >. e. <_ ) |
|
| 10 | 3 9 | sylib | |- ( ph -> <. A , B >. e. <_ ) |
| 11 | 1 2 | opelxpd | |- ( ph -> <. A , B >. e. ( RR X. RR ) ) |
| 12 | 10 11 | elind | |- ( ph -> <. A , B >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 13 | 12 | adantr | |- ( ( ph /\ n e. NN ) -> <. A , B >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 14 | 0le0 | |- 0 <_ 0 |
|
| 15 | df-br | |- ( 0 <_ 0 <-> <. 0 , 0 >. e. <_ ) |
|
| 16 | 14 15 | mpbi | |- <. 0 , 0 >. e. <_ |
| 17 | 0re | |- 0 e. RR |
|
| 18 | opelxpi | |- ( ( 0 e. RR /\ 0 e. RR ) -> <. 0 , 0 >. e. ( RR X. RR ) ) |
|
| 19 | 17 17 18 | mp2an | |- <. 0 , 0 >. e. ( RR X. RR ) |
| 20 | 16 19 | elini | |- <. 0 , 0 >. e. ( <_ i^i ( RR X. RR ) ) |
| 21 | ifcl | |- ( ( <. A , B >. e. ( <_ i^i ( RR X. RR ) ) /\ <. 0 , 0 >. e. ( <_ i^i ( RR X. RR ) ) ) -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 22 | 13 20 21 | sylancl | |- ( ( ph /\ n e. NN ) -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 23 | 22 4 | fmptd | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 24 | eqid | |- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
|
| 25 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. G ) ) = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 26 | 24 25 | ovolsf | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) |
| 27 | 23 26 | syl | |- ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) |
| 28 | 27 | frnd | |- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ ( 0 [,) +oo ) ) |
| 29 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 30 | 28 29 | sstrdi | |- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* ) |
| 31 | supxrcl | |- ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) |
|
| 32 | 30 31 | syl | |- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) e. RR* ) |
| 33 | 2 1 | resubcld | |- ( ph -> ( B - A ) e. RR ) |
| 34 | 33 | rexrd | |- ( ph -> ( B - A ) e. RR* ) |
| 35 | 1nn | |- 1 e. NN |
|
| 36 | 35 | a1i | |- ( ( ph /\ x e. ( A [,] B ) ) -> 1 e. NN ) |
| 37 | op1stg | |- ( ( A e. RR /\ B e. RR ) -> ( 1st ` <. A , B >. ) = A ) |
|
| 38 | 1 2 37 | syl2anc | |- ( ph -> ( 1st ` <. A , B >. ) = A ) |
| 39 | 38 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( 1st ` <. A , B >. ) = A ) |
| 40 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
|
| 41 | 1 2 40 | syl2anc | |- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 42 | 41 | biimpa | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 43 | 42 | simp2d | |- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x ) |
| 44 | 39 43 | eqbrtrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( 1st ` <. A , B >. ) <_ x ) |
| 45 | 42 | simp3d | |- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 46 | op2ndg | |- ( ( A e. RR /\ B e. RR ) -> ( 2nd ` <. A , B >. ) = B ) |
|
| 47 | 1 2 46 | syl2anc | |- ( ph -> ( 2nd ` <. A , B >. ) = B ) |
| 48 | 47 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( 2nd ` <. A , B >. ) = B ) |
| 49 | 45 48 | breqtrrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ ( 2nd ` <. A , B >. ) ) |
| 50 | fveq2 | |- ( n = 1 -> ( G ` n ) = ( G ` 1 ) ) |
|
| 51 | iftrue | |- ( n = 1 -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) = <. A , B >. ) |
|
| 52 | opex | |- <. A , B >. e. _V |
|
| 53 | 51 4 52 | fvmpt | |- ( 1 e. NN -> ( G ` 1 ) = <. A , B >. ) |
| 54 | 35 53 | ax-mp | |- ( G ` 1 ) = <. A , B >. |
| 55 | 50 54 | eqtrdi | |- ( n = 1 -> ( G ` n ) = <. A , B >. ) |
| 56 | 55 | fveq2d | |- ( n = 1 -> ( 1st ` ( G ` n ) ) = ( 1st ` <. A , B >. ) ) |
| 57 | 56 | breq1d | |- ( n = 1 -> ( ( 1st ` ( G ` n ) ) <_ x <-> ( 1st ` <. A , B >. ) <_ x ) ) |
| 58 | 55 | fveq2d | |- ( n = 1 -> ( 2nd ` ( G ` n ) ) = ( 2nd ` <. A , B >. ) ) |
| 59 | 58 | breq2d | |- ( n = 1 -> ( x <_ ( 2nd ` ( G ` n ) ) <-> x <_ ( 2nd ` <. A , B >. ) ) ) |
| 60 | 57 59 | anbi12d | |- ( n = 1 -> ( ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) <-> ( ( 1st ` <. A , B >. ) <_ x /\ x <_ ( 2nd ` <. A , B >. ) ) ) ) |
| 61 | 60 | rspcev | |- ( ( 1 e. NN /\ ( ( 1st ` <. A , B >. ) <_ x /\ x <_ ( 2nd ` <. A , B >. ) ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) |
| 62 | 36 44 49 61 | syl12anc | |- ( ( ph /\ x e. ( A [,] B ) ) -> E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) |
| 63 | 62 | ralrimiva | |- ( ph -> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) |
| 64 | ovolficc | |- ( ( ( A [,] B ) C_ RR /\ G : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( ( A [,] B ) C_ U. ran ( [,] o. G ) <-> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) ) |
|
| 65 | 6 23 64 | syl2anc | |- ( ph -> ( ( A [,] B ) C_ U. ran ( [,] o. G ) <-> A. x e. ( A [,] B ) E. n e. NN ( ( 1st ` ( G ` n ) ) <_ x /\ x <_ ( 2nd ` ( G ` n ) ) ) ) ) |
| 66 | 63 65 | mpbird | |- ( ph -> ( A [,] B ) C_ U. ran ( [,] o. G ) ) |
| 67 | 25 | ovollb2 | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( A [,] B ) C_ U. ran ( [,] o. G ) ) -> ( vol* ` ( A [,] B ) ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) |
| 68 | 23 66 67 | syl2anc | |- ( ph -> ( vol* ` ( A [,] B ) ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) ) |
| 69 | addrid | |- ( k e. CC -> ( k + 0 ) = k ) |
|
| 70 | 69 | adantl | |- ( ( ( ph /\ x e. NN ) /\ k e. CC ) -> ( k + 0 ) = k ) |
| 71 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 72 | 35 71 | eleqtri | |- 1 e. ( ZZ>= ` 1 ) |
| 73 | 72 | a1i | |- ( ( ph /\ x e. NN ) -> 1 e. ( ZZ>= ` 1 ) ) |
| 74 | simpr | |- ( ( ph /\ x e. NN ) -> x e. NN ) |
|
| 75 | 74 71 | eleqtrdi | |- ( ( ph /\ x e. NN ) -> x e. ( ZZ>= ` 1 ) ) |
| 76 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 77 | 27 | adantr | |- ( ( ph /\ x e. NN ) -> seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) ) |
| 78 | ffvelcdm | |- ( ( seq 1 ( + , ( ( abs o. - ) o. G ) ) : NN --> ( 0 [,) +oo ) /\ 1 e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. ( 0 [,) +oo ) ) |
|
| 79 | 77 35 78 | sylancl | |- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. ( 0 [,) +oo ) ) |
| 80 | 76 79 | sselid | |- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. RR ) |
| 81 | 80 | recnd | |- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) e. CC ) |
| 82 | 23 | ad2antrr | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 83 | elfzuz | |- ( k e. ( ( 1 + 1 ) ... x ) -> k e. ( ZZ>= ` ( 1 + 1 ) ) ) |
|
| 84 | 83 | adantl | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 85 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 86 | 85 | fveq2i | |- ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) |
| 87 | 84 86 | eleqtrrdi | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. ( ZZ>= ` 2 ) ) |
| 88 | eluz2nn | |- ( k e. ( ZZ>= ` 2 ) -> k e. NN ) |
|
| 89 | 87 88 | syl | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k e. NN ) |
| 90 | 24 | ovolfsval | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ k e. NN ) -> ( ( ( abs o. - ) o. G ) ` k ) = ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) ) |
| 91 | 82 89 90 | syl2anc | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( ( abs o. - ) o. G ) ` k ) = ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) ) |
| 92 | eqeq1 | |- ( n = k -> ( n = 1 <-> k = 1 ) ) |
|
| 93 | 92 | ifbid | |- ( n = k -> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
| 94 | opex | |- <. 0 , 0 >. e. _V |
|
| 95 | 52 94 | ifex | |- if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) e. _V |
| 96 | 93 4 95 | fvmpt | |- ( k e. NN -> ( G ` k ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
| 97 | 89 96 | syl | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( G ` k ) = if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
| 98 | eluz2b3 | |- ( k e. ( ZZ>= ` 2 ) <-> ( k e. NN /\ k =/= 1 ) ) |
|
| 99 | 98 | simprbi | |- ( k e. ( ZZ>= ` 2 ) -> k =/= 1 ) |
| 100 | 87 99 | syl | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> k =/= 1 ) |
| 101 | 100 | neneqd | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> -. k = 1 ) |
| 102 | 101 | iffalsed | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> if ( k = 1 , <. A , B >. , <. 0 , 0 >. ) = <. 0 , 0 >. ) |
| 103 | 97 102 | eqtrd | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( G ` k ) = <. 0 , 0 >. ) |
| 104 | 103 | fveq2d | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 2nd ` ( G ` k ) ) = ( 2nd ` <. 0 , 0 >. ) ) |
| 105 | c0ex | |- 0 e. _V |
|
| 106 | 105 105 | op2nd | |- ( 2nd ` <. 0 , 0 >. ) = 0 |
| 107 | 104 106 | eqtrdi | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 2nd ` ( G ` k ) ) = 0 ) |
| 108 | 103 | fveq2d | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 1st ` ( G ` k ) ) = ( 1st ` <. 0 , 0 >. ) ) |
| 109 | 105 105 | op1st | |- ( 1st ` <. 0 , 0 >. ) = 0 |
| 110 | 108 109 | eqtrdi | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( 1st ` ( G ` k ) ) = 0 ) |
| 111 | 107 110 | oveq12d | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) = ( 0 - 0 ) ) |
| 112 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 113 | 111 112 | eqtrdi | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( 2nd ` ( G ` k ) ) - ( 1st ` ( G ` k ) ) ) = 0 ) |
| 114 | 91 113 | eqtrd | |- ( ( ( ph /\ x e. NN ) /\ k e. ( ( 1 + 1 ) ... x ) ) -> ( ( ( abs o. - ) o. G ) ` k ) = 0 ) |
| 115 | 70 73 75 81 114 | seqid2 | |- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) ) |
| 116 | 1z | |- 1 e. ZZ |
|
| 117 | 23 | adantr | |- ( ( ph /\ x e. NN ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 118 | 24 | ovolfsval | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ 1 e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) |
| 119 | 117 35 118 | sylancl | |- ( ( ph /\ x e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) |
| 120 | 54 | fveq2i | |- ( 2nd ` ( G ` 1 ) ) = ( 2nd ` <. A , B >. ) |
| 121 | 47 | adantr | |- ( ( ph /\ x e. NN ) -> ( 2nd ` <. A , B >. ) = B ) |
| 122 | 120 121 | eqtrid | |- ( ( ph /\ x e. NN ) -> ( 2nd ` ( G ` 1 ) ) = B ) |
| 123 | 54 | fveq2i | |- ( 1st ` ( G ` 1 ) ) = ( 1st ` <. A , B >. ) |
| 124 | 38 | adantr | |- ( ( ph /\ x e. NN ) -> ( 1st ` <. A , B >. ) = A ) |
| 125 | 123 124 | eqtrid | |- ( ( ph /\ x e. NN ) -> ( 1st ` ( G ` 1 ) ) = A ) |
| 126 | 122 125 | oveq12d | |- ( ( ph /\ x e. NN ) -> ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) = ( B - A ) ) |
| 127 | 119 126 | eqtrd | |- ( ( ph /\ x e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( B - A ) ) |
| 128 | 116 127 | seq1i | |- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) = ( B - A ) ) |
| 129 | 115 128 | eqtr3d | |- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) = ( B - A ) ) |
| 130 | 33 | leidd | |- ( ph -> ( B - A ) <_ ( B - A ) ) |
| 131 | 130 | adantr | |- ( ( ph /\ x e. NN ) -> ( B - A ) <_ ( B - A ) ) |
| 132 | 129 131 | eqbrtrd | |- ( ( ph /\ x e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) |
| 133 | 132 | ralrimiva | |- ( ph -> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) |
| 134 | 27 | ffnd | |- ( ph -> seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN ) |
| 135 | breq1 | |- ( z = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) -> ( z <_ ( B - A ) <-> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) ) |
|
| 136 | 135 | ralrn | |- ( seq 1 ( + , ( ( abs o. - ) o. G ) ) Fn NN -> ( A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) <-> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) ) |
| 137 | 134 136 | syl | |- ( ph -> ( A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) <-> A. x e. NN ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` x ) <_ ( B - A ) ) ) |
| 138 | 133 137 | mpbird | |- ( ph -> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) |
| 139 | supxrleub | |- ( ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) C_ RR* /\ ( B - A ) e. RR* ) -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) <-> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) ) |
|
| 140 | 30 34 139 | syl2anc | |- ( ph -> ( sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) <-> A. z e. ran seq 1 ( + , ( ( abs o. - ) o. G ) ) z <_ ( B - A ) ) ) |
| 141 | 138 140 | mpbird | |- ( ph -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. G ) ) , RR* , < ) <_ ( B - A ) ) |
| 142 | 8 32 34 68 141 | xrletrd | |- ( ph -> ( vol* ` ( A [,] B ) ) <_ ( B - A ) ) |