This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addrid | |- ( A e. CC -> ( A + 0 ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | |- 1 e. RR |
|
| 2 | ax-rnegex | |- ( 1 e. RR -> E. c e. RR ( 1 + c ) = 0 ) |
|
| 3 | ax-1ne0 | |- 1 =/= 0 |
|
| 4 | oveq2 | |- ( c = 0 -> ( 1 + c ) = ( 1 + 0 ) ) |
|
| 5 | 4 | eqeq1d | |- ( c = 0 -> ( ( 1 + c ) = 0 <-> ( 1 + 0 ) = 0 ) ) |
| 6 | 5 | biimpcd | |- ( ( 1 + c ) = 0 -> ( c = 0 -> ( 1 + 0 ) = 0 ) ) |
| 7 | oveq2 | |- ( ( 1 + 0 ) = 0 -> ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) ) |
|
| 8 | ax-icn | |- _i e. CC |
|
| 9 | 8 8 | mulcli | |- ( _i x. _i ) e. CC |
| 10 | 9 9 | mulcli | |- ( ( _i x. _i ) x. ( _i x. _i ) ) e. CC |
| 11 | ax-1cn | |- 1 e. CC |
|
| 12 | 0cn | |- 0 e. CC |
|
| 13 | 10 11 12 | adddii | |- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 1 ) + ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) ) |
| 14 | 10 | mulridi | |- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 1 ) = ( ( _i x. _i ) x. ( _i x. _i ) ) |
| 15 | mul01 | |- ( ( ( _i x. _i ) x. ( _i x. _i ) ) e. CC -> ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) = 0 ) |
|
| 16 | 10 15 | ax-mp | |- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) = 0 |
| 17 | ax-i2m1 | |- ( ( _i x. _i ) + 1 ) = 0 |
|
| 18 | 16 17 | eqtr4i | |- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) = ( ( _i x. _i ) + 1 ) |
| 19 | 14 18 | oveq12i | |- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 1 ) + ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) |
| 20 | 13 19 | eqtri | |- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) |
| 21 | 20 16 | eqeq12i | |- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) <-> ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) = 0 ) |
| 22 | 10 9 11 | addassi | |- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) + 1 ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) |
| 23 | 9 | mulridi | |- ( ( _i x. _i ) x. 1 ) = ( _i x. _i ) |
| 24 | 23 | oveq2i | |- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) x. 1 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) |
| 25 | 9 9 11 | adddii | |- ( ( _i x. _i ) x. ( ( _i x. _i ) + 1 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) x. 1 ) ) |
| 26 | 17 | oveq2i | |- ( ( _i x. _i ) x. ( ( _i x. _i ) + 1 ) ) = ( ( _i x. _i ) x. 0 ) |
| 27 | mul01 | |- ( ( _i x. _i ) e. CC -> ( ( _i x. _i ) x. 0 ) = 0 ) |
|
| 28 | 9 27 | ax-mp | |- ( ( _i x. _i ) x. 0 ) = 0 |
| 29 | 26 28 | eqtri | |- ( ( _i x. _i ) x. ( ( _i x. _i ) + 1 ) ) = 0 |
| 30 | 25 29 | eqtr3i | |- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) x. 1 ) ) = 0 |
| 31 | 24 30 | eqtr3i | |- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) = 0 |
| 32 | 31 | oveq1i | |- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) + 1 ) = ( 0 + 1 ) |
| 33 | 22 32 | eqtr3i | |- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) = ( 0 + 1 ) |
| 34 | 00id | |- ( 0 + 0 ) = 0 |
|
| 35 | 34 | eqcomi | |- 0 = ( 0 + 0 ) |
| 36 | 33 35 | eqeq12i | |- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) = 0 <-> ( 0 + 1 ) = ( 0 + 0 ) ) |
| 37 | 0re | |- 0 e. RR |
|
| 38 | readdcan | |- ( ( 1 e. RR /\ 0 e. RR /\ 0 e. RR ) -> ( ( 0 + 1 ) = ( 0 + 0 ) <-> 1 = 0 ) ) |
|
| 39 | 1 37 37 38 | mp3an | |- ( ( 0 + 1 ) = ( 0 + 0 ) <-> 1 = 0 ) |
| 40 | 21 36 39 | 3bitri | |- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) <-> 1 = 0 ) |
| 41 | 7 40 | sylib | |- ( ( 1 + 0 ) = 0 -> 1 = 0 ) |
| 42 | 6 41 | syl6 | |- ( ( 1 + c ) = 0 -> ( c = 0 -> 1 = 0 ) ) |
| 43 | 42 | necon3d | |- ( ( 1 + c ) = 0 -> ( 1 =/= 0 -> c =/= 0 ) ) |
| 44 | 3 43 | mpi | |- ( ( 1 + c ) = 0 -> c =/= 0 ) |
| 45 | ax-rrecex | |- ( ( c e. RR /\ c =/= 0 ) -> E. x e. RR ( c x. x ) = 1 ) |
|
| 46 | 44 45 | sylan2 | |- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> E. x e. RR ( c x. x ) = 1 ) |
| 47 | simpr | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> A e. CC ) |
|
| 48 | simplrl | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> x e. RR ) |
|
| 49 | 48 | recnd | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> x e. CC ) |
| 50 | 47 49 | mulcld | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( A x. x ) e. CC ) |
| 51 | simplll | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> c e. RR ) |
|
| 52 | 51 | recnd | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> c e. CC ) |
| 53 | 12 | a1i | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 0 e. CC ) |
| 54 | 50 52 53 | adddid | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. ( c + 0 ) ) = ( ( ( A x. x ) x. c ) + ( ( A x. x ) x. 0 ) ) ) |
| 55 | 11 | a1i | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 1 e. CC ) |
| 56 | 55 52 53 | addassd | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( 1 + c ) + 0 ) = ( 1 + ( c + 0 ) ) ) |
| 57 | simpllr | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 + c ) = 0 ) |
|
| 58 | 57 | oveq1d | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( 1 + c ) + 0 ) = ( 0 + 0 ) ) |
| 59 | 56 58 | eqtr3d | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 + ( c + 0 ) ) = ( 0 + 0 ) ) |
| 60 | 34 59 57 | 3eqtr4a | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 + ( c + 0 ) ) = ( 1 + c ) ) |
| 61 | 37 | a1i | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 0 e. RR ) |
| 62 | 51 61 | readdcld | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( c + 0 ) e. RR ) |
| 63 | 1 | a1i | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 1 e. RR ) |
| 64 | readdcan | |- ( ( ( c + 0 ) e. RR /\ c e. RR /\ 1 e. RR ) -> ( ( 1 + ( c + 0 ) ) = ( 1 + c ) <-> ( c + 0 ) = c ) ) |
|
| 65 | 62 51 63 64 | syl3anc | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( 1 + ( c + 0 ) ) = ( 1 + c ) <-> ( c + 0 ) = c ) ) |
| 66 | 60 65 | mpbid | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( c + 0 ) = c ) |
| 67 | 66 | oveq2d | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. ( c + 0 ) ) = ( ( A x. x ) x. c ) ) |
| 68 | 54 67 | eqtr3d | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( ( A x. x ) x. c ) + ( ( A x. x ) x. 0 ) ) = ( ( A x. x ) x. c ) ) |
| 69 | mul31 | |- ( ( A e. CC /\ x e. CC /\ c e. CC ) -> ( ( A x. x ) x. c ) = ( ( c x. x ) x. A ) ) |
|
| 70 | 47 49 52 69 | syl3anc | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. c ) = ( ( c x. x ) x. A ) ) |
| 71 | simplrr | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( c x. x ) = 1 ) |
|
| 72 | 71 | oveq1d | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( c x. x ) x. A ) = ( 1 x. A ) ) |
| 73 | 47 | mullidd | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 x. A ) = A ) |
| 74 | 70 72 73 | 3eqtrd | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. c ) = A ) |
| 75 | mul01 | |- ( ( A x. x ) e. CC -> ( ( A x. x ) x. 0 ) = 0 ) |
|
| 76 | 50 75 | syl | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. 0 ) = 0 ) |
| 77 | 74 76 | oveq12d | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( ( A x. x ) x. c ) + ( ( A x. x ) x. 0 ) ) = ( A + 0 ) ) |
| 78 | 68 77 74 | 3eqtr3d | |- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( A + 0 ) = A ) |
| 79 | 78 | exp42 | |- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> ( x e. RR -> ( ( c x. x ) = 1 -> ( A e. CC -> ( A + 0 ) = A ) ) ) ) |
| 80 | 79 | rexlimdv | |- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> ( E. x e. RR ( c x. x ) = 1 -> ( A e. CC -> ( A + 0 ) = A ) ) ) |
| 81 | 46 80 | mpd | |- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> ( A e. CC -> ( A + 0 ) = A ) ) |
| 82 | 81 | rexlimiva | |- ( E. c e. RR ( 1 + c ) = 0 -> ( A e. CC -> ( A + 0 ) = A ) ) |
| 83 | 1 2 82 | mp2b | |- ( A e. CC -> ( A + 0 ) = A ) |