This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014) (Proof shortened by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ovolicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ovolicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ovolicc1.4 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) | ||
| Assertion | ovolicc1 | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ ( 𝐵 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ovolicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ovolicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | ovolicc1.4 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) | |
| 5 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 6 | 1 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 7 | ovolcl | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ* ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ* ) |
| 9 | df-br | ⊢ ( 𝐴 ≤ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≤ ) | |
| 10 | 3 9 | sylib | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ≤ ) |
| 11 | 1 2 | opelxpd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( ℝ × ℝ ) ) |
| 12 | 10 11 | elind | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 𝐴 , 𝐵 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 14 | 0le0 | ⊢ 0 ≤ 0 | |
| 15 | df-br | ⊢ ( 0 ≤ 0 ↔ 〈 0 , 0 〉 ∈ ≤ ) | |
| 16 | 14 15 | mpbi | ⊢ 〈 0 , 0 〉 ∈ ≤ |
| 17 | 0re | ⊢ 0 ∈ ℝ | |
| 18 | opelxpi | ⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) | |
| 19 | 17 17 18 | mp2an | ⊢ 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) |
| 20 | 16 19 | elini | ⊢ 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 21 | ifcl | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 22 | 13 20 21 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 23 | 22 4 | fmptd | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 24 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) | |
| 25 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 26 | 24 25 | ovolsf | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 27 | 23 26 | syl | ⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 28 | 27 | frnd | ⊢ ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ( 0 [,) +∞ ) ) |
| 29 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 30 | 28 29 | sstrdi | ⊢ ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* ) |
| 31 | supxrcl | ⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ∈ ℝ* ) | |
| 32 | 30 31 | syl | ⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 33 | 2 1 | resubcld | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 34 | 33 | rexrd | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ* ) |
| 35 | 1nn | ⊢ 1 ∈ ℕ | |
| 36 | 35 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 1 ∈ ℕ ) |
| 37 | op1stg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) | |
| 38 | 1 2 37 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 40 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 41 | 1 2 40 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 42 | 41 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 43 | 42 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 44 | 39 43 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ) |
| 45 | 42 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 46 | op2ndg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) | |
| 47 | 1 2 46 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 49 | 45 48 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 50 | fveq2 | ⊢ ( 𝑛 = 1 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 1 ) ) | |
| 51 | iftrue | ⊢ ( 𝑛 = 1 → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) = 〈 𝐴 , 𝐵 〉 ) | |
| 52 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 53 | 51 4 52 | fvmpt | ⊢ ( 1 ∈ ℕ → ( 𝐺 ‘ 1 ) = 〈 𝐴 , 𝐵 〉 ) |
| 54 | 35 53 | ax-mp | ⊢ ( 𝐺 ‘ 1 ) = 〈 𝐴 , 𝐵 〉 |
| 55 | 50 54 | eqtrdi | ⊢ ( 𝑛 = 1 → ( 𝐺 ‘ 𝑛 ) = 〈 𝐴 , 𝐵 〉 ) |
| 56 | 55 | fveq2d | ⊢ ( 𝑛 = 1 → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 57 | 56 | breq1d | ⊢ ( 𝑛 = 1 → ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ) ) |
| 58 | 55 | fveq2d | ⊢ ( 𝑛 = 1 → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 59 | 58 | breq2d | ⊢ ( 𝑛 = 1 → ( 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ↔ 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 60 | 57 59 | anbi12d | ⊢ ( 𝑛 = 1 → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 61 | 60 | rspcev | ⊢ ( ( 1 ∈ ℕ ∧ ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 62 | 36 44 49 61 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 63 | 62 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 64 | ovolficc | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | |
| 65 | 6 23 64 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 66 | 63 65 | mpbird | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
| 67 | 25 | ovollb2 | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ) |
| 68 | 23 66 67 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ) |
| 69 | addrid | ⊢ ( 𝑘 ∈ ℂ → ( 𝑘 + 0 ) = 𝑘 ) | |
| 70 | 69 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ℂ ) → ( 𝑘 + 0 ) = 𝑘 ) |
| 71 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 72 | 35 71 | eleqtri | ⊢ 1 ∈ ( ℤ≥ ‘ 1 ) |
| 73 | 72 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 1 ∈ ( ℤ≥ ‘ 1 ) ) |
| 74 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ ) | |
| 75 | 74 71 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
| 76 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 77 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 78 | ffvelcdm | ⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ∧ 1 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ) | |
| 79 | 77 35 78 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
| 80 | 76 79 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ℝ ) |
| 81 | 80 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ℂ ) |
| 82 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 83 | elfzuz | ⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) | |
| 84 | 83 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 85 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 86 | 85 | fveq2i | ⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
| 87 | 84 86 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
| 88 | eluz2nn | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ∈ ℕ ) | |
| 89 | 87 88 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ∈ ℕ ) |
| 90 | 24 | ovolfsval | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑘 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 91 | 82 89 90 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑘 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 92 | eqeq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 = 1 ↔ 𝑘 = 1 ) ) | |
| 93 | 92 | ifbid | ⊢ ( 𝑛 = 𝑘 → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) = if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
| 94 | opex | ⊢ 〈 0 , 0 〉 ∈ V | |
| 95 | 52 94 | ifex | ⊢ if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ∈ V |
| 96 | 93 4 95 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
| 97 | 89 96 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
| 98 | eluz2b3 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≠ 1 ) ) | |
| 99 | 98 | simprbi | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ≠ 1 ) |
| 100 | 87 99 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ≠ 1 ) |
| 101 | 100 | neneqd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ¬ 𝑘 = 1 ) |
| 102 | 101 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) = 〈 0 , 0 〉 ) |
| 103 | 97 102 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 𝐺 ‘ 𝑘 ) = 〈 0 , 0 〉 ) |
| 104 | 103 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 2nd ‘ 〈 0 , 0 〉 ) ) |
| 105 | c0ex | ⊢ 0 ∈ V | |
| 106 | 105 105 | op2nd | ⊢ ( 2nd ‘ 〈 0 , 0 〉 ) = 0 |
| 107 | 104 106 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) = 0 ) |
| 108 | 103 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 1st ‘ 〈 0 , 0 〉 ) ) |
| 109 | 105 105 | op1st | ⊢ ( 1st ‘ 〈 0 , 0 〉 ) = 0 |
| 110 | 108 109 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) = 0 ) |
| 111 | 107 110 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) = ( 0 − 0 ) ) |
| 112 | 0m0e0 | ⊢ ( 0 − 0 ) = 0 | |
| 113 | 111 112 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) = 0 ) |
| 114 | 91 113 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑘 ) = 0 ) |
| 115 | 70 73 75 81 114 | seqid2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ) |
| 116 | 1z | ⊢ 1 ∈ ℤ | |
| 117 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 118 | 24 | ovolfsval | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 1 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 119 | 117 35 118 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 120 | 54 | fveq2i | ⊢ ( 2nd ‘ ( 𝐺 ‘ 1 ) ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) |
| 121 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 122 | 120 121 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 1 ) ) = 𝐵 ) |
| 123 | 54 | fveq2i | ⊢ ( 1st ‘ ( 𝐺 ‘ 1 ) ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) |
| 124 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 125 | 123 124 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 1 ) ) = 𝐴 ) |
| 126 | 122 125 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) = ( 𝐵 − 𝐴 ) ) |
| 127 | 119 126 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( 𝐵 − 𝐴 ) ) |
| 128 | 116 127 | seq1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) = ( 𝐵 − 𝐴 ) ) |
| 129 | 115 128 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) = ( 𝐵 − 𝐴 ) ) |
| 130 | 33 | leidd | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 131 | 130 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝐵 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 132 | 129 131 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 133 | 132 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 134 | 27 | ffnd | ⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) Fn ℕ ) |
| 135 | breq1 | ⊢ ( 𝑧 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) → ( 𝑧 ≤ ( 𝐵 − 𝐴 ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) ) | |
| 136 | 135 | ralrn | ⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑥 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
| 137 | 134 136 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑥 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
| 138 | 133 137 | mpbird | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ) |
| 139 | supxrleub | ⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* ∧ ( 𝐵 − 𝐴 ) ∈ ℝ* ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ) ) | |
| 140 | 30 34 139 | syl2anc | ⊢ ( 𝜑 → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ) ) |
| 141 | 138 140 | mpbird | ⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( 𝐵 − 𝐴 ) ) |
| 142 | 8 32 34 68 141 | xrletrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ ( 𝐵 − 𝐴 ) ) |