This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltlen | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( A <_ B /\ B =/= A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltle | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> A <_ B ) ) |
|
| 2 | ltne | |- ( ( A e. RR /\ A < B ) -> B =/= A ) |
|
| 3 | 2 | ex | |- ( A e. RR -> ( A < B -> B =/= A ) ) |
| 4 | 3 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> B =/= A ) ) |
| 5 | 1 4 | jcad | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> ( A <_ B /\ B =/= A ) ) ) |
| 6 | leloe | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
|
| 7 | df-ne | |- ( B =/= A <-> -. B = A ) |
|
| 8 | pm2.24 | |- ( B = A -> ( -. B = A -> A < B ) ) |
|
| 9 | 8 | eqcoms | |- ( A = B -> ( -. B = A -> A < B ) ) |
| 10 | 7 9 | biimtrid | |- ( A = B -> ( B =/= A -> A < B ) ) |
| 11 | 10 | jao1i | |- ( ( A < B \/ A = B ) -> ( B =/= A -> A < B ) ) |
| 12 | 6 11 | biimtrdi | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( B =/= A -> A < B ) ) ) |
| 13 | 12 | impd | |- ( ( A e. RR /\ B e. RR ) -> ( ( A <_ B /\ B =/= A ) -> A < B ) ) |
| 14 | 5 13 | impbid | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( A <_ B /\ B =/= A ) ) ) |