This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mumul | |- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( mmu ` ( A x. B ) ) = ( ( mmu ` A ) x. ( mmu ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> B e. NN ) |
|
| 2 | mucl | |- ( B e. NN -> ( mmu ` B ) e. ZZ ) |
|
| 3 | 1 2 | syl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` B ) e. ZZ ) |
| 4 | 3 | zcnd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` B ) e. CC ) |
| 5 | 4 | mul02d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( 0 x. ( mmu ` B ) ) = 0 ) |
| 6 | simpr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` A ) = 0 ) |
|
| 7 | 6 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( ( mmu ` A ) x. ( mmu ` B ) ) = ( 0 x. ( mmu ` B ) ) ) |
| 8 | mumullem1 | |- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |
|
| 9 | 8 | 3adantl3 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |
| 10 | 5 7 9 | 3eqtr4rd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` A ) = 0 ) -> ( mmu ` ( A x. B ) ) = ( ( mmu ` A ) x. ( mmu ` B ) ) ) |
| 11 | simpl1 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> A e. NN ) |
|
| 12 | mucl | |- ( A e. NN -> ( mmu ` A ) e. ZZ ) |
|
| 13 | 11 12 | syl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` A ) e. ZZ ) |
| 14 | 13 | zcnd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` A ) e. CC ) |
| 15 | 14 | mul01d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( ( mmu ` A ) x. 0 ) = 0 ) |
| 16 | simpr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` B ) = 0 ) |
|
| 17 | 16 | oveq2d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( ( mmu ` A ) x. ( mmu ` B ) ) = ( ( mmu ` A ) x. 0 ) ) |
| 18 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 19 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 20 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 21 | 18 19 20 | syl2an | |- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) = ( B x. A ) ) |
| 22 | 21 | fveq2d | |- ( ( A e. NN /\ B e. NN ) -> ( mmu ` ( A x. B ) ) = ( mmu ` ( B x. A ) ) ) |
| 23 | 22 | adantr | |- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( A x. B ) ) = ( mmu ` ( B x. A ) ) ) |
| 24 | mumullem1 | |- ( ( ( B e. NN /\ A e. NN ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( B x. A ) ) = 0 ) |
|
| 25 | 24 | ancom1s | |- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( B x. A ) ) = 0 ) |
| 26 | 23 25 | eqtrd | |- ( ( ( A e. NN /\ B e. NN ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |
| 27 | 26 | 3adantl3 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( A x. B ) ) = 0 ) |
| 28 | 15 17 27 | 3eqtr4rd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( mmu ` B ) = 0 ) -> ( mmu ` ( A x. B ) ) = ( ( mmu ` A ) x. ( mmu ` B ) ) ) |
| 29 | simpl1 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> A e. NN ) |
|
| 30 | simpl2 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> B e. NN ) |
|
| 31 | 29 30 | nnmulcld | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( A x. B ) e. NN ) |
| 32 | mumullem2 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` ( A x. B ) ) =/= 0 ) |
|
| 33 | muval2 | |- ( ( ( A x. B ) e. NN /\ ( mmu ` ( A x. B ) ) =/= 0 ) -> ( mmu ` ( A x. B ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || ( A x. B ) } ) ) ) |
|
| 34 | 31 32 33 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` ( A x. B ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || ( A x. B ) } ) ) ) |
| 35 | neg1cn | |- -u 1 e. CC |
|
| 36 | 35 | a1i | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> -u 1 e. CC ) |
| 37 | fzfi | |- ( 1 ... B ) e. Fin |
|
| 38 | prmssnn | |- Prime C_ NN |
|
| 39 | rabss2 | |- ( Prime C_ NN -> { p e. Prime | p || B } C_ { p e. NN | p || B } ) |
|
| 40 | 38 39 | ax-mp | |- { p e. Prime | p || B } C_ { p e. NN | p || B } |
| 41 | dvdsssfz1 | |- ( B e. NN -> { p e. NN | p || B } C_ ( 1 ... B ) ) |
|
| 42 | 30 41 | syl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. NN | p || B } C_ ( 1 ... B ) ) |
| 43 | 40 42 | sstrid | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || B } C_ ( 1 ... B ) ) |
| 44 | ssfi | |- ( ( ( 1 ... B ) e. Fin /\ { p e. Prime | p || B } C_ ( 1 ... B ) ) -> { p e. Prime | p || B } e. Fin ) |
|
| 45 | 37 43 44 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || B } e. Fin ) |
| 46 | hashcl | |- ( { p e. Prime | p || B } e. Fin -> ( # ` { p e. Prime | p || B } ) e. NN0 ) |
|
| 47 | 45 46 | syl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( # ` { p e. Prime | p || B } ) e. NN0 ) |
| 48 | fzfi | |- ( 1 ... A ) e. Fin |
|
| 49 | rabss2 | |- ( Prime C_ NN -> { p e. Prime | p || A } C_ { p e. NN | p || A } ) |
|
| 50 | 38 49 | ax-mp | |- { p e. Prime | p || A } C_ { p e. NN | p || A } |
| 51 | dvdsssfz1 | |- ( A e. NN -> { p e. NN | p || A } C_ ( 1 ... A ) ) |
|
| 52 | 29 51 | syl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. NN | p || A } C_ ( 1 ... A ) ) |
| 53 | 50 52 | sstrid | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || A } C_ ( 1 ... A ) ) |
| 54 | ssfi | |- ( ( ( 1 ... A ) e. Fin /\ { p e. Prime | p || A } C_ ( 1 ... A ) ) -> { p e. Prime | p || A } e. Fin ) |
|
| 55 | 48 53 54 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || A } e. Fin ) |
| 56 | hashcl | |- ( { p e. Prime | p || A } e. Fin -> ( # ` { p e. Prime | p || A } ) e. NN0 ) |
|
| 57 | 55 56 | syl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( # ` { p e. Prime | p || A } ) e. NN0 ) |
| 58 | 36 47 57 | expaddd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( -u 1 ^ ( ( # ` { p e. Prime | p || A } ) + ( # ` { p e. Prime | p || B } ) ) ) = ( ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) x. ( -u 1 ^ ( # ` { p e. Prime | p || B } ) ) ) ) |
| 59 | simpr | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> p e. Prime ) |
|
| 60 | simpl1 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> A e. NN ) |
|
| 61 | 60 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> A e. ZZ ) |
| 62 | 61 | adantlr | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> A e. ZZ ) |
| 63 | simpl2 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> B e. NN ) |
|
| 64 | 63 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> B e. ZZ ) |
| 65 | 64 | adantlr | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> B e. ZZ ) |
| 66 | euclemma | |- ( ( p e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( p || ( A x. B ) <-> ( p || A \/ p || B ) ) ) |
|
| 67 | 59 62 65 66 | syl3anc | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( p || ( A x. B ) <-> ( p || A \/ p || B ) ) ) |
| 68 | 67 | rabbidva | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || ( A x. B ) } = { p e. Prime | ( p || A \/ p || B ) } ) |
| 69 | unrab | |- ( { p e. Prime | p || A } u. { p e. Prime | p || B } ) = { p e. Prime | ( p || A \/ p || B ) } |
|
| 70 | 68 69 | eqtr4di | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | p || ( A x. B ) } = ( { p e. Prime | p || A } u. { p e. Prime | p || B } ) ) |
| 71 | 70 | fveq2d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( # ` { p e. Prime | p || ( A x. B ) } ) = ( # ` ( { p e. Prime | p || A } u. { p e. Prime | p || B } ) ) ) |
| 72 | inrab | |- ( { p e. Prime | p || A } i^i { p e. Prime | p || B } ) = { p e. Prime | ( p || A /\ p || B ) } |
|
| 73 | nprmdvds1 | |- ( p e. Prime -> -. p || 1 ) |
|
| 74 | 73 | adantl | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> -. p || 1 ) |
| 75 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 76 | 75 | adantl | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> p e. ZZ ) |
| 77 | dvdsgcd | |- ( ( p e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( p || A /\ p || B ) -> p || ( A gcd B ) ) ) |
|
| 78 | 76 62 65 77 | syl3anc | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p || A /\ p || B ) -> p || ( A gcd B ) ) ) |
| 79 | simpll3 | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( A gcd B ) = 1 ) |
|
| 80 | 79 | breq2d | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) <-> p || 1 ) ) |
| 81 | 78 80 | sylibd | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> ( ( p || A /\ p || B ) -> p || 1 ) ) |
| 82 | 74 81 | mtod | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) /\ p e. Prime ) -> -. ( p || A /\ p || B ) ) |
| 83 | 82 | ralrimiva | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> A. p e. Prime -. ( p || A /\ p || B ) ) |
| 84 | rabeq0 | |- ( { p e. Prime | ( p || A /\ p || B ) } = (/) <-> A. p e. Prime -. ( p || A /\ p || B ) ) |
|
| 85 | 83 84 | sylibr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> { p e. Prime | ( p || A /\ p || B ) } = (/) ) |
| 86 | 72 85 | eqtrid | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( { p e. Prime | p || A } i^i { p e. Prime | p || B } ) = (/) ) |
| 87 | hashun | |- ( ( { p e. Prime | p || A } e. Fin /\ { p e. Prime | p || B } e. Fin /\ ( { p e. Prime | p || A } i^i { p e. Prime | p || B } ) = (/) ) -> ( # ` ( { p e. Prime | p || A } u. { p e. Prime | p || B } ) ) = ( ( # ` { p e. Prime | p || A } ) + ( # ` { p e. Prime | p || B } ) ) ) |
|
| 88 | 55 45 86 87 | syl3anc | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( # ` ( { p e. Prime | p || A } u. { p e. Prime | p || B } ) ) = ( ( # ` { p e. Prime | p || A } ) + ( # ` { p e. Prime | p || B } ) ) ) |
| 89 | 71 88 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( # ` { p e. Prime | p || ( A x. B ) } ) = ( ( # ` { p e. Prime | p || A } ) + ( # ` { p e. Prime | p || B } ) ) ) |
| 90 | 89 | oveq2d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( -u 1 ^ ( # ` { p e. Prime | p || ( A x. B ) } ) ) = ( -u 1 ^ ( ( # ` { p e. Prime | p || A } ) + ( # ` { p e. Prime | p || B } ) ) ) ) |
| 91 | simprl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` A ) =/= 0 ) |
|
| 92 | muval2 | |- ( ( A e. NN /\ ( mmu ` A ) =/= 0 ) -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
|
| 93 | 29 91 92 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
| 94 | simprr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` B ) =/= 0 ) |
|
| 95 | muval2 | |- ( ( B e. NN /\ ( mmu ` B ) =/= 0 ) -> ( mmu ` B ) = ( -u 1 ^ ( # ` { p e. Prime | p || B } ) ) ) |
|
| 96 | 30 94 95 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` B ) = ( -u 1 ^ ( # ` { p e. Prime | p || B } ) ) ) |
| 97 | 93 96 | oveq12d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( ( mmu ` A ) x. ( mmu ` B ) ) = ( ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) x. ( -u 1 ^ ( # ` { p e. Prime | p || B } ) ) ) ) |
| 98 | 58 90 97 | 3eqtr4rd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( ( mmu ` A ) x. ( mmu ` B ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || ( A x. B ) } ) ) ) |
| 99 | 34 98 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` ( A x. B ) ) = ( ( mmu ` A ) x. ( mmu ` B ) ) ) |
| 100 | 10 28 99 | pm2.61da2ne | |- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( mmu ` ( A x. B ) ) = ( ( mmu ` A ) x. ( mmu ` B ) ) ) |