This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | add20 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> 0 <_ A ) |
|
| 2 | simplrl | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B e. RR ) |
|
| 3 | simplll | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> A e. RR ) |
|
| 4 | addge02 | |- ( ( B e. RR /\ A e. RR ) -> ( 0 <_ A <-> B <_ ( A + B ) ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( 0 <_ A <-> B <_ ( A + B ) ) ) |
| 6 | 1 5 | mpbid | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B <_ ( A + B ) ) |
| 7 | simpr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A + B ) = 0 ) |
|
| 8 | 6 7 | breqtrd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B <_ 0 ) |
| 9 | simplrr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> 0 <_ B ) |
|
| 10 | 0red | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> 0 e. RR ) |
|
| 11 | 2 10 | letri3d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( B = 0 <-> ( B <_ 0 /\ 0 <_ B ) ) ) |
| 12 | 8 9 11 | mpbir2and | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B = 0 ) |
| 13 | 12 | oveq2d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A + B ) = ( A + 0 ) ) |
| 14 | 3 | recnd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> A e. CC ) |
| 15 | 14 | addridd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A + 0 ) = A ) |
| 16 | 13 7 15 | 3eqtr3rd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> A = 0 ) |
| 17 | 16 12 | jca | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A = 0 /\ B = 0 ) ) |
| 18 | 17 | ex | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
| 19 | oveq12 | |- ( ( A = 0 /\ B = 0 ) -> ( A + B ) = ( 0 + 0 ) ) |
|
| 20 | 00id | |- ( 0 + 0 ) = 0 |
|
| 21 | 19 20 | eqtrdi | |- ( ( A = 0 /\ B = 0 ) -> ( A + B ) = 0 ) |
| 22 | 18 21 | impbid1 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |