This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative subtraction. (Contributed by NM, 14-Mar-2005) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subge0 | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ ( A - B ) <-> B <_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | |- ( ( A e. RR /\ B e. RR ) -> 0 e. RR ) |
|
| 2 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 3 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 4 | leaddsub | |- ( ( 0 e. RR /\ B e. RR /\ A e. RR ) -> ( ( 0 + B ) <_ A <-> 0 <_ ( A - B ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 + B ) <_ A <-> 0 <_ ( A - B ) ) ) |
| 6 | 2 | recnd | |- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 7 | 6 | addlidd | |- ( ( A e. RR /\ B e. RR ) -> ( 0 + B ) = B ) |
| 8 | 7 | breq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 + B ) <_ A <-> B <_ A ) ) |
| 9 | 5 8 | bitr3d | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ ( A - B ) <-> B <_ A ) ) |