This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Join two open intervals to create a third. (Contributed by NM, 11-Aug-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioojoin | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) = ( A (,) C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass | |- ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) = ( ( A (,) B ) u. ( { B } u. ( B (,) C ) ) ) |
|
| 2 | snunioo | |- ( ( B e. RR* /\ C e. RR* /\ B < C ) -> ( { B } u. ( B (,) C ) ) = ( B [,) C ) ) |
|
| 3 | 2 | 3expa | |- ( ( ( B e. RR* /\ C e. RR* ) /\ B < C ) -> ( { B } u. ( B (,) C ) ) = ( B [,) C ) ) |
| 4 | 3 | 3adantl1 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ B < C ) -> ( { B } u. ( B (,) C ) ) = ( B [,) C ) ) |
| 5 | 4 | adantrl | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( { B } u. ( B (,) C ) ) = ( B [,) C ) ) |
| 6 | 5 | uneq2d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( A (,) B ) u. ( { B } u. ( B (,) C ) ) ) = ( ( A (,) B ) u. ( B [,) C ) ) ) |
| 7 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 8 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 9 | xrlenlt | |- ( ( B e. RR* /\ w e. RR* ) -> ( B <_ w <-> -. w < B ) ) |
|
| 10 | xrlttr | |- ( ( w e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( w < B /\ B < C ) -> w < C ) ) |
|
| 11 | xrltletr | |- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A < B /\ B <_ w ) -> A < w ) ) |
|
| 12 | 7 8 9 7 10 11 | ixxun | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( A (,) B ) u. ( B [,) C ) ) = ( A (,) C ) ) |
| 13 | 6 12 | eqtrd | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( A (,) B ) u. ( { B } u. ( B (,) C ) ) ) = ( A (,) C ) ) |
| 14 | 1 13 | eqtrid | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) = ( A (,) C ) ) |