This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of iblsplit using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblsplitf.X | |- F/ x ph |
|
| iblsplitf.vol | |- ( ph -> ( vol* ` ( A i^i B ) ) = 0 ) |
||
| iblsplitf.u | |- ( ph -> U = ( A u. B ) ) |
||
| iblsplitf.c | |- ( ( ph /\ x e. U ) -> C e. CC ) |
||
| iblsplitf.a | |- ( ph -> ( x e. A |-> C ) e. L^1 ) |
||
| iblsplitf.b | |- ( ph -> ( x e. B |-> C ) e. L^1 ) |
||
| Assertion | iblsplitf | |- ( ph -> ( x e. U |-> C ) e. L^1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblsplitf.X | |- F/ x ph |
|
| 2 | iblsplitf.vol | |- ( ph -> ( vol* ` ( A i^i B ) ) = 0 ) |
|
| 3 | iblsplitf.u | |- ( ph -> U = ( A u. B ) ) |
|
| 4 | iblsplitf.c | |- ( ( ph /\ x e. U ) -> C e. CC ) |
|
| 5 | iblsplitf.a | |- ( ph -> ( x e. A |-> C ) e. L^1 ) |
|
| 6 | iblsplitf.b | |- ( ph -> ( x e. B |-> C ) e. L^1 ) |
|
| 7 | nfcv | |- F/_ y C |
|
| 8 | nfcsb1v | |- F/_ x [_ y / x ]_ C |
|
| 9 | csbeq1a | |- ( x = y -> C = [_ y / x ]_ C ) |
|
| 10 | 7 8 9 | cbvmpt | |- ( x e. U |-> C ) = ( y e. U |-> [_ y / x ]_ C ) |
| 11 | simpr | |- ( ( ph /\ y e. U ) -> y e. U ) |
|
| 12 | nfv | |- F/ x y e. U |
|
| 13 | 1 12 | nfan | |- F/ x ( ph /\ y e. U ) |
| 14 | 4 | adantlr | |- ( ( ( ph /\ y e. U ) /\ x e. U ) -> C e. CC ) |
| 15 | 14 | ex | |- ( ( ph /\ y e. U ) -> ( x e. U -> C e. CC ) ) |
| 16 | 13 15 | ralrimi | |- ( ( ph /\ y e. U ) -> A. x e. U C e. CC ) |
| 17 | rspcsbela | |- ( ( y e. U /\ A. x e. U C e. CC ) -> [_ y / x ]_ C e. CC ) |
|
| 18 | 11 16 17 | syl2anc | |- ( ( ph /\ y e. U ) -> [_ y / x ]_ C e. CC ) |
| 19 | 9 | equcoms | |- ( y = x -> C = [_ y / x ]_ C ) |
| 20 | 19 | eqcomd | |- ( y = x -> [_ y / x ]_ C = C ) |
| 21 | 8 7 20 | cbvmpt | |- ( y e. A |-> [_ y / x ]_ C ) = ( x e. A |-> C ) |
| 22 | 21 5 | eqeltrid | |- ( ph -> ( y e. A |-> [_ y / x ]_ C ) e. L^1 ) |
| 23 | 8 7 20 | cbvmpt | |- ( y e. B |-> [_ y / x ]_ C ) = ( x e. B |-> C ) |
| 24 | 23 6 | eqeltrid | |- ( ph -> ( y e. B |-> [_ y / x ]_ C ) e. L^1 ) |
| 25 | 2 3 18 22 24 | iblsplit | |- ( ph -> ( y e. U |-> [_ y / x ]_ C ) e. L^1 ) |
| 26 | 10 25 | eqeltrid | |- ( ph -> ( x e. U |-> C ) e. L^1 ) |