This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate F converges to 0 . (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim0.1 | |- Z = ( ZZ>= ` M ) |
|
| clim0.2 | |- ( ph -> M e. ZZ ) |
||
| clim0.3 | |- ( ph -> F e. V ) |
||
| clim0.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
||
| clim0c.6 | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
||
| Assertion | clim0c | |- ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim0.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | clim0.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | clim0.3 | |- ( ph -> F e. V ) |
|
| 4 | clim0.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
|
| 5 | clim0c.6 | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
|
| 6 | 0cnd | |- ( ph -> 0 e. CC ) |
|
| 7 | 1 2 3 4 6 5 | clim2c | |- ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x ) ) |
| 8 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 9 | 5 | subid1d | |- ( ( ph /\ k e. Z ) -> ( B - 0 ) = B ) |
| 10 | 9 | fveq2d | |- ( ( ph /\ k e. Z ) -> ( abs ` ( B - 0 ) ) = ( abs ` B ) ) |
| 11 | 10 | breq1d | |- ( ( ph /\ k e. Z ) -> ( ( abs ` ( B - 0 ) ) < x <-> ( abs ` B ) < x ) ) |
| 12 | 8 11 | sylan2 | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( B - 0 ) ) < x <-> ( abs ` B ) < x ) ) |
| 13 | 12 | anassrs | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( B - 0 ) ) < x <-> ( abs ` B ) < x ) ) |
| 14 | 13 | ralbidva | |- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) |
| 15 | 14 | rexbidva | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) |
| 16 | 15 | ralbidv | |- ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) |
| 17 | 7 16 | bitrd | |- ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) |