This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iseralt . A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseralt.1 | |- Z = ( ZZ>= ` M ) |
|
| iseralt.2 | |- ( ph -> M e. ZZ ) |
||
| iseralt.3 | |- ( ph -> G : Z --> RR ) |
||
| iseralt.4 | |- ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
||
| iseralt.5 | |- ( ph -> G ~~> 0 ) |
||
| Assertion | iseraltlem1 | |- ( ( ph /\ N e. Z ) -> 0 <_ ( G ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseralt.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iseralt.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | iseralt.3 | |- ( ph -> G : Z --> RR ) |
|
| 4 | iseralt.4 | |- ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
|
| 5 | iseralt.5 | |- ( ph -> G ~~> 0 ) |
|
| 6 | eqid | |- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
|
| 7 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 8 | 7 1 | eleq2s | |- ( N e. Z -> N e. ZZ ) |
| 9 | 8 | adantl | |- ( ( ph /\ N e. Z ) -> N e. ZZ ) |
| 10 | 5 | adantr | |- ( ( ph /\ N e. Z ) -> G ~~> 0 ) |
| 11 | 3 | ffvelcdmda | |- ( ( ph /\ N e. Z ) -> ( G ` N ) e. RR ) |
| 12 | 11 | recnd | |- ( ( ph /\ N e. Z ) -> ( G ` N ) e. CC ) |
| 13 | 1z | |- 1 e. ZZ |
|
| 14 | uzssz | |- ( ZZ>= ` 1 ) C_ ZZ |
|
| 15 | zex | |- ZZ e. _V |
|
| 16 | 14 15 | climconst2 | |- ( ( ( G ` N ) e. CC /\ 1 e. ZZ ) -> ( ZZ X. { ( G ` N ) } ) ~~> ( G ` N ) ) |
| 17 | 12 13 16 | sylancl | |- ( ( ph /\ N e. Z ) -> ( ZZ X. { ( G ` N ) } ) ~~> ( G ` N ) ) |
| 18 | 3 | ad2antrr | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> G : Z --> RR ) |
| 19 | 1 | uztrn2 | |- ( ( N e. Z /\ n e. ( ZZ>= ` N ) ) -> n e. Z ) |
| 20 | 19 | adantll | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> n e. Z ) |
| 21 | 18 20 | ffvelcdmd | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( G ` n ) e. RR ) |
| 22 | eluzelz | |- ( n e. ( ZZ>= ` N ) -> n e. ZZ ) |
|
| 23 | 22 | adantl | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> n e. ZZ ) |
| 24 | fvex | |- ( G ` N ) e. _V |
|
| 25 | 24 | fvconst2 | |- ( n e. ZZ -> ( ( ZZ X. { ( G ` N ) } ) ` n ) = ( G ` N ) ) |
| 26 | 23 25 | syl | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( ( ZZ X. { ( G ` N ) } ) ` n ) = ( G ` N ) ) |
| 27 | 11 | adantr | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( G ` N ) e. RR ) |
| 28 | 26 27 | eqeltrd | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( ( ZZ X. { ( G ` N ) } ) ` n ) e. RR ) |
| 29 | simpr | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> n e. ( ZZ>= ` N ) ) |
|
| 30 | 18 | adantr | |- ( ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) /\ k e. ( N ... n ) ) -> G : Z --> RR ) |
| 31 | simplr | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> N e. Z ) |
|
| 32 | elfzuz | |- ( k e. ( N ... n ) -> k e. ( ZZ>= ` N ) ) |
|
| 33 | 1 | uztrn2 | |- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 34 | 31 32 33 | syl2an | |- ( ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) /\ k e. ( N ... n ) ) -> k e. Z ) |
| 35 | 30 34 | ffvelcdmd | |- ( ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) /\ k e. ( N ... n ) ) -> ( G ` k ) e. RR ) |
| 36 | simpl | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( ph /\ N e. Z ) ) |
|
| 37 | elfzuz | |- ( k e. ( N ... ( n - 1 ) ) -> k e. ( ZZ>= ` N ) ) |
|
| 38 | 33 | adantll | |- ( ( ( ph /\ N e. Z ) /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 39 | 4 | adantlr | |- ( ( ( ph /\ N e. Z ) /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
| 40 | 38 39 | syldan | |- ( ( ( ph /\ N e. Z ) /\ k e. ( ZZ>= ` N ) ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
| 41 | 36 37 40 | syl2an | |- ( ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) /\ k e. ( N ... ( n - 1 ) ) ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
| 42 | 29 35 41 | monoord2 | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( G ` n ) <_ ( G ` N ) ) |
| 43 | 42 26 | breqtrrd | |- ( ( ( ph /\ N e. Z ) /\ n e. ( ZZ>= ` N ) ) -> ( G ` n ) <_ ( ( ZZ X. { ( G ` N ) } ) ` n ) ) |
| 44 | 6 9 10 17 21 28 43 | climle | |- ( ( ph /\ N e. Z ) -> 0 <_ ( G ` N ) ) |