This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iseralt . From iseraltlem2 , we have ( -u 1 ^ n ) x. S ( n + 2 k ) <_ ( -u 1 ^ n ) x. S ( n ) and ( -u 1 ^ n ) x. S ( n + 1 ) <_ ( -u 1 ^ n ) x. S ( n + 2 k + 1 ) , and we also have ( -u 1 ^ n ) x. S ( n + 1 ) = ( -u 1 ^ n ) x. S ( n ) - G ( n + 1 ) for each n by the definition of the partial sum S , so combining the inequalities we get ( -u 1 ^ n ) x. S ( n ) - G ( n + 1 ) = ( -u 1 ^ n ) x. S ( n + 1 ) <_ ( -u 1 ^ n ) x. S ( n + 2 k + 1 ) = ( -u 1 ^ n ) x. S ( n + 2 k ) - G ( n + 2 k + 1 ) <_ ( -u 1 ^ n ) x. S ( n + 2 k ) <_ ( -u 1 ^ n ) x. S ( n ) <_ ( -u 1 ^ n ) x. S ( n ) + G ( n + 1 ) , so | ( -u 1 ^ n ) x. S ( n + 2 k + 1 ) - ( -u 1 ^ n ) x. S ( n ) | = | S ( n + 2 k + 1 ) - S ( n ) | <_ G ( n + 1 ) and | ( -u 1 ^ n ) x. S ( n + 2 k ) - ( -u 1 ^ n ) x. S ( n ) | = | S ( n + 2 k ) - S ( n ) | <_ G ( n + 1 ) . Thus, both even and odd partial sums are Cauchy if G converges to 0 . (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseralt.1 | |- Z = ( ZZ>= ` M ) |
|
| iseralt.2 | |- ( ph -> M e. ZZ ) |
||
| iseralt.3 | |- ( ph -> G : Z --> RR ) |
||
| iseralt.4 | |- ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
||
| iseralt.5 | |- ( ph -> G ~~> 0 ) |
||
| iseralt.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
||
| Assertion | iseraltlem3 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) <_ ( G ` ( N + 1 ) ) /\ ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) <_ ( G ` ( N + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseralt.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iseralt.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | iseralt.3 | |- ( ph -> G : Z --> RR ) |
|
| 4 | iseralt.4 | |- ( ( ph /\ k e. Z ) -> ( G ` ( k + 1 ) ) <_ ( G ` k ) ) |
|
| 5 | iseralt.5 | |- ( ph -> G ~~> 0 ) |
|
| 6 | iseralt.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
|
| 7 | neg1rr | |- -u 1 e. RR |
|
| 8 | 7 | a1i | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> -u 1 e. RR ) |
| 9 | neg1ne0 | |- -u 1 =/= 0 |
|
| 10 | 9 | a1i | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> -u 1 =/= 0 ) |
| 11 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 12 | 1 11 | eqsstri | |- Z C_ ZZ |
| 13 | simp2 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> N e. Z ) |
|
| 14 | 12 13 | sselid | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> N e. ZZ ) |
| 15 | 8 10 14 | reexpclzd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ N ) e. RR ) |
| 16 | 15 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ N ) e. CC ) |
| 17 | 7 | a1i | |- ( ( ph /\ k e. Z ) -> -u 1 e. RR ) |
| 18 | 9 | a1i | |- ( ( ph /\ k e. Z ) -> -u 1 =/= 0 ) |
| 19 | simpr | |- ( ( ph /\ k e. Z ) -> k e. Z ) |
|
| 20 | 12 19 | sselid | |- ( ( ph /\ k e. Z ) -> k e. ZZ ) |
| 21 | 17 18 20 | reexpclzd | |- ( ( ph /\ k e. Z ) -> ( -u 1 ^ k ) e. RR ) |
| 22 | 3 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
| 23 | 21 22 | remulcld | |- ( ( ph /\ k e. Z ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) e. RR ) |
| 24 | 6 23 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 25 | 1 2 24 | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 26 | 25 | 3ad2ant1 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> seq M ( + , F ) : Z --> RR ) |
| 27 | 13 1 | eleqtrdi | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> N e. ( ZZ>= ` M ) ) |
| 28 | 2nn0 | |- 2 e. NN0 |
|
| 29 | simp3 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> K e. NN0 ) |
|
| 30 | nn0mulcl | |- ( ( 2 e. NN0 /\ K e. NN0 ) -> ( 2 x. K ) e. NN0 ) |
|
| 31 | 28 29 30 | sylancr | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 2 x. K ) e. NN0 ) |
| 32 | uzaddcl | |- ( ( N e. ( ZZ>= ` M ) /\ ( 2 x. K ) e. NN0 ) -> ( N + ( 2 x. K ) ) e. ( ZZ>= ` M ) ) |
|
| 33 | 27 31 32 | syl2anc | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( N + ( 2 x. K ) ) e. ( ZZ>= ` M ) ) |
| 34 | 33 1 | eleqtrrdi | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( N + ( 2 x. K ) ) e. Z ) |
| 35 | 26 34 | ffvelcdmd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) e. RR ) |
| 36 | 35 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) e. CC ) |
| 37 | 26 13 | ffvelcdmd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` N ) e. RR ) |
| 38 | 37 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` N ) e. CC ) |
| 39 | 16 36 38 | subdid | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
| 40 | 39 | fveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) |
| 41 | 35 37 | resubcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) e. RR ) |
| 42 | 41 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) e. CC ) |
| 43 | 16 42 | absmuld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) |
| 44 | 40 43 | eqtr3d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) = ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) |
| 45 | 8 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> -u 1 e. CC ) |
| 46 | absexpz | |- ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ N e. ZZ ) -> ( abs ` ( -u 1 ^ N ) ) = ( ( abs ` -u 1 ) ^ N ) ) |
|
| 47 | 45 10 14 46 | syl3anc | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( -u 1 ^ N ) ) = ( ( abs ` -u 1 ) ^ N ) ) |
| 48 | ax-1cn | |- 1 e. CC |
|
| 49 | 48 | absnegi | |- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 50 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 51 | 49 50 | eqtri | |- ( abs ` -u 1 ) = 1 |
| 52 | 51 | oveq1i | |- ( ( abs ` -u 1 ) ^ N ) = ( 1 ^ N ) |
| 53 | 1exp | |- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
|
| 54 | 14 53 | syl | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 ^ N ) = 1 ) |
| 55 | 52 54 | eqtrid | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` -u 1 ) ^ N ) = 1 ) |
| 56 | 47 55 | eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( -u 1 ^ N ) ) = 1 ) |
| 57 | 56 | oveq1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( 1 x. ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) |
| 58 | 42 | abscld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) e. RR ) |
| 59 | 58 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) e. CC ) |
| 60 | 59 | mullidd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 x. ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) |
| 61 | 44 57 60 | 3eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) ) |
| 62 | 15 37 | remulcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) e. RR ) |
| 63 | 3 | 3ad2ant1 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> G : Z --> RR ) |
| 64 | 1 | peano2uzs | |- ( N e. Z -> ( N + 1 ) e. Z ) |
| 65 | 64 | 3ad2ant2 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( N + 1 ) e. Z ) |
| 66 | 63 65 | ffvelcdmd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( G ` ( N + 1 ) ) e. RR ) |
| 67 | 62 66 | resubcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) e. RR ) |
| 68 | 1 | peano2uzs | |- ( ( N + ( 2 x. K ) ) e. Z -> ( ( N + ( 2 x. K ) ) + 1 ) e. Z ) |
| 69 | 34 68 | syl | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( N + ( 2 x. K ) ) + 1 ) e. Z ) |
| 70 | 26 69 | ffvelcdmd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) e. RR ) |
| 71 | 15 70 | remulcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) e. RR ) |
| 72 | 15 35 | remulcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) e. RR ) |
| 73 | seqp1 | |- ( N e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( N + 1 ) ) = ( ( seq M ( + , F ) ` N ) + ( F ` ( N + 1 ) ) ) ) |
|
| 74 | 27 73 | syl | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + 1 ) ) = ( ( seq M ( + , F ) ` N ) + ( F ` ( N + 1 ) ) ) ) |
| 75 | fveq2 | |- ( k = ( N + 1 ) -> ( F ` k ) = ( F ` ( N + 1 ) ) ) |
|
| 76 | oveq2 | |- ( k = ( N + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( N + 1 ) ) ) |
|
| 77 | fveq2 | |- ( k = ( N + 1 ) -> ( G ` k ) = ( G ` ( N + 1 ) ) ) |
|
| 78 | 76 77 | oveq12d | |- ( k = ( N + 1 ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) = ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) ) |
| 79 | 75 78 | eqeq12d | |- ( k = ( N + 1 ) -> ( ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) <-> ( F ` ( N + 1 ) ) = ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) ) ) |
| 80 | 6 | ralrimiva | |- ( ph -> A. k e. Z ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
| 81 | 80 | 3ad2ant1 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> A. k e. Z ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) ) |
| 82 | 79 81 65 | rspcdva | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( F ` ( N + 1 ) ) = ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) ) |
| 83 | 82 | oveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` N ) + ( F ` ( N + 1 ) ) ) = ( ( seq M ( + , F ) ` N ) + ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) ) ) |
| 84 | 45 10 14 | expp1zd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( N + 1 ) ) = ( ( -u 1 ^ N ) x. -u 1 ) ) |
| 85 | neg1cn | |- -u 1 e. CC |
|
| 86 | mulcom | |- ( ( ( -u 1 ^ N ) e. CC /\ -u 1 e. CC ) -> ( ( -u 1 ^ N ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ N ) ) ) |
|
| 87 | 16 85 86 | sylancl | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ N ) ) ) |
| 88 | 16 | mulm1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 x. ( -u 1 ^ N ) ) = -u ( -u 1 ^ N ) ) |
| 89 | 84 87 88 | 3eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( N + 1 ) ) = -u ( -u 1 ^ N ) ) |
| 90 | 89 | oveq1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) = ( -u ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) |
| 91 | 66 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( G ` ( N + 1 ) ) e. CC ) |
| 92 | 16 91 | mulneg1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) = -u ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) |
| 93 | 90 92 | eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) = -u ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) |
| 94 | 93 | oveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` N ) + ( ( -u 1 ^ ( N + 1 ) ) x. ( G ` ( N + 1 ) ) ) ) = ( ( seq M ( + , F ) ` N ) + -u ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) |
| 95 | 74 83 94 | 3eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + 1 ) ) = ( ( seq M ( + , F ) ` N ) + -u ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) |
| 96 | 15 66 | remulcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) e. RR ) |
| 97 | 96 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) e. CC ) |
| 98 | 38 97 | negsubd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` N ) + -u ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) = ( ( seq M ( + , F ) ` N ) - ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) |
| 99 | 95 98 | eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + 1 ) ) = ( ( seq M ( + , F ) ` N ) - ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) |
| 100 | 99 | oveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` N ) - ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) ) |
| 101 | 16 38 97 | subdid | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` N ) - ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) ) |
| 102 | 14 | zcnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> N e. CC ) |
| 103 | 102 | 2timesd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 2 x. N ) = ( N + N ) ) |
| 104 | 103 | oveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( 2 x. N ) ) = ( -u 1 ^ ( N + N ) ) ) |
| 105 | 2z | |- 2 e. ZZ |
|
| 106 | 105 | a1i | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> 2 e. ZZ ) |
| 107 | expmulz | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ N e. ZZ ) ) -> ( -u 1 ^ ( 2 x. N ) ) = ( ( -u 1 ^ 2 ) ^ N ) ) |
|
| 108 | 45 10 106 14 107 | syl22anc | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( 2 x. N ) ) = ( ( -u 1 ^ 2 ) ^ N ) ) |
| 109 | 104 108 | eqtr3d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ 2 ) ^ N ) ) |
| 110 | neg1sqe1 | |- ( -u 1 ^ 2 ) = 1 |
|
| 111 | 110 | oveq1i | |- ( ( -u 1 ^ 2 ) ^ N ) = ( 1 ^ N ) |
| 112 | 109 111 | eqtrdi | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( N + N ) ) = ( 1 ^ N ) ) |
| 113 | expaddz | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( N e. ZZ /\ N e. ZZ ) ) -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) |
|
| 114 | 45 10 14 14 113 | syl22anc | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) |
| 115 | 112 114 54 | 3eqtr3d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) |
| 116 | 115 | oveq1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( G ` ( N + 1 ) ) ) = ( 1 x. ( G ` ( N + 1 ) ) ) ) |
| 117 | 16 16 91 | mulassd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( G ` ( N + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) |
| 118 | 91 | mullidd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 x. ( G ` ( N + 1 ) ) ) = ( G ` ( N + 1 ) ) ) |
| 119 | 116 117 118 | 3eqtr3d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) = ( G ` ( N + 1 ) ) ) |
| 120 | 119 | oveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( N + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) ) |
| 121 | 100 101 120 | 3eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) ) |
| 122 | 1 2 3 4 5 6 | iseraltlem2 | |- ( ( ph /\ ( N + 1 ) e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( ( N + 1 ) + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) |
| 123 | 64 122 | syl3an2 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( ( N + 1 ) + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) |
| 124 | 1cnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> 1 e. CC ) |
|
| 125 | 31 | nn0cnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 2 x. K ) e. CC ) |
| 126 | 102 124 125 | add32d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( N + 1 ) + ( 2 x. K ) ) = ( ( N + ( 2 x. K ) ) + 1 ) ) |
| 127 | 126 | fveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + 1 ) + ( 2 x. K ) ) ) = ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) |
| 128 | 89 127 | oveq12d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( ( N + 1 ) + ( 2 x. K ) ) ) ) = ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 129 | 89 | oveq1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) = ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) |
| 130 | 123 128 129 | 3brtr3d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) |
| 131 | 70 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) e. CC ) |
| 132 | 16 131 | mulneg1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 133 | 26 65 | ffvelcdmd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + 1 ) ) e. RR ) |
| 134 | 133 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( N + 1 ) ) e. CC ) |
| 135 | 16 134 | mulneg1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) = -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) |
| 136 | 130 132 135 | 3brtr3d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) |
| 137 | 15 133 | remulcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) e. RR ) |
| 138 | 137 71 | lenegd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <-> -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ -u ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) ) ) |
| 139 | 136 138 | mpbird | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 140 | 121 139 | eqbrtrrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 141 | seqp1 | |- ( ( N + ( 2 x. K ) ) e. ( ZZ>= ` M ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) + ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
|
| 142 | 33 141 | syl | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) + ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 143 | fveq2 | |- ( k = ( ( N + ( 2 x. K ) ) + 1 ) -> ( F ` k ) = ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) |
|
| 144 | oveq2 | |- ( k = ( ( N + ( 2 x. K ) ) + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) ) |
|
| 145 | fveq2 | |- ( k = ( ( N + ( 2 x. K ) ) + 1 ) -> ( G ` k ) = ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) |
|
| 146 | 144 145 | oveq12d | |- ( k = ( ( N + ( 2 x. K ) ) + 1 ) -> ( ( -u 1 ^ k ) x. ( G ` k ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 147 | 143 146 | eqeq12d | |- ( k = ( ( N + ( 2 x. K ) ) + 1 ) -> ( ( F ` k ) = ( ( -u 1 ^ k ) x. ( G ` k ) ) <-> ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) |
| 148 | 147 81 69 | rspcdva | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) = ( ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 149 | 12 65 | sselid | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( N + 1 ) e. ZZ ) |
| 150 | 31 | nn0zd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 2 x. K ) e. ZZ ) |
| 151 | expaddz | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( ( N + 1 ) e. ZZ /\ ( 2 x. K ) e. ZZ ) ) -> ( -u 1 ^ ( ( N + 1 ) + ( 2 x. K ) ) ) = ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( 2 x. K ) ) ) ) |
|
| 152 | 45 10 149 150 151 | syl22anc | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( ( N + 1 ) + ( 2 x. K ) ) ) = ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( 2 x. K ) ) ) ) |
| 153 | 29 | nn0zd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> K e. ZZ ) |
| 154 | expmulz | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ K e. ZZ ) ) -> ( -u 1 ^ ( 2 x. K ) ) = ( ( -u 1 ^ 2 ) ^ K ) ) |
|
| 155 | 45 10 106 153 154 | syl22anc | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( 2 x. K ) ) = ( ( -u 1 ^ 2 ) ^ K ) ) |
| 156 | 110 | oveq1i | |- ( ( -u 1 ^ 2 ) ^ K ) = ( 1 ^ K ) |
| 157 | 1exp | |- ( K e. ZZ -> ( 1 ^ K ) = 1 ) |
|
| 158 | 153 157 | syl | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 ^ K ) = 1 ) |
| 159 | 156 158 | eqtrid | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ 2 ) ^ K ) = 1 ) |
| 160 | 155 159 | eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( 2 x. K ) ) = 1 ) |
| 161 | 89 160 | oveq12d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( N + 1 ) ) x. ( -u 1 ^ ( 2 x. K ) ) ) = ( -u ( -u 1 ^ N ) x. 1 ) ) |
| 162 | 152 161 | eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( ( N + 1 ) + ( 2 x. K ) ) ) = ( -u ( -u 1 ^ N ) x. 1 ) ) |
| 163 | 126 | oveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( ( N + 1 ) + ( 2 x. K ) ) ) = ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) ) |
| 164 | 16 | negcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> -u ( -u 1 ^ N ) e. CC ) |
| 165 | 164 | mulridd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. 1 ) = -u ( -u 1 ^ N ) ) |
| 166 | 162 163 165 | 3eqtr3d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) = -u ( -u 1 ^ N ) ) |
| 167 | 166 | oveq1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ ( ( N + ( 2 x. K ) ) + 1 ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( -u ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 168 | 63 69 | ffvelcdmd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) e. RR ) |
| 169 | 168 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) e. CC ) |
| 170 | 16 169 | mulneg1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( -u ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = -u ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 171 | 148 167 170 | 3eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) = -u ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 172 | 171 | oveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) + ( F ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) + -u ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) |
| 173 | 15 168 | remulcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) e. RR ) |
| 174 | 173 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) e. CC ) |
| 175 | 36 174 | negsubd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) + -u ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) |
| 176 | 142 172 175 | 3eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) = ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) |
| 177 | 176 | oveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) ) |
| 178 | 16 36 174 | subdid | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) ) |
| 179 | 115 | oveq1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( 1 x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 180 | 16 16 169 | mulassd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) |
| 181 | 169 | mullidd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) |
| 182 | 179 180 181 | 3eqtr3d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) = ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) |
| 183 | 182 | oveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( ( -u 1 ^ N ) x. ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 184 | 177 178 183 | 3eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) ) |
| 185 | simp1 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ph ) |
|
| 186 | 1 2 3 4 5 | iseraltlem1 | |- ( ( ph /\ ( ( N + ( 2 x. K ) ) + 1 ) e. Z ) -> 0 <_ ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) |
| 187 | 185 69 186 | syl2anc | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> 0 <_ ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) |
| 188 | 72 168 | subge02d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 0 <_ ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) <-> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) ) ) |
| 189 | 187 188 | mpbid | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( G ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) ) |
| 190 | 184 189 | eqbrtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) ) |
| 191 | 67 71 72 140 190 | letrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) ) |
| 192 | 62 66 | readdcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) e. RR ) |
| 193 | 1 2 3 4 5 6 | iseraltlem2 | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) |
| 194 | 1 2 3 4 5 | iseraltlem1 | |- ( ( ph /\ ( N + 1 ) e. Z ) -> 0 <_ ( G ` ( N + 1 ) ) ) |
| 195 | 185 65 194 | syl2anc | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> 0 <_ ( G ` ( N + 1 ) ) ) |
| 196 | 62 66 | addge01d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 0 <_ ( G ` ( N + 1 ) ) <-> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) ) |
| 197 | 195 196 | mpbid | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) |
| 198 | 72 62 192 193 197 | letrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) |
| 199 | 72 62 66 | absdifled | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) <_ ( G ` ( N + 1 ) ) <-> ( ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) ) ) |
| 200 | 191 198 199 | mpbir2and | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) <_ ( G ` ( N + 1 ) ) ) |
| 201 | 61 200 | eqbrtrrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) <_ ( G ` ( N + 1 ) ) ) |
| 202 | 16 131 38 | subdid | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) = ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) |
| 203 | 202 | fveq2d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) ) |
| 204 | 70 37 | resubcld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) e. RR ) |
| 205 | 204 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) e. CC ) |
| 206 | 16 205 | absmuld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( -u 1 ^ N ) x. ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) |
| 207 | 203 206 | eqtr3d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) = ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) |
| 208 | 56 | oveq1d | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( -u 1 ^ N ) ) x. ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( 1 x. ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) ) |
| 209 | 205 | abscld | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) e. RR ) |
| 210 | 209 | recnd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) e. CC ) |
| 211 | 210 | mullidd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( 1 x. ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) |
| 212 | 207 208 211 | 3eqtrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) = ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) ) |
| 213 | 71 72 192 190 198 | letrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) |
| 214 | 71 62 66 | absdifled | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) <_ ( G ` ( N + 1 ) ) <-> ( ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) - ( G ` ( N + 1 ) ) ) <_ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) /\ ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) <_ ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) + ( G ` ( N + 1 ) ) ) ) ) ) |
| 215 | 140 213 214 | mpbir2and | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) ) - ( ( -u 1 ^ N ) x. ( seq M ( + , F ) ` N ) ) ) ) <_ ( G ` ( N + 1 ) ) ) |
| 216 | 212 215 | eqbrtrrd | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) <_ ( G ` ( N + 1 ) ) ) |
| 217 | 201 216 | jca | |- ( ( ph /\ N e. Z /\ K e. NN0 ) -> ( ( abs ` ( ( seq M ( + , F ) ` ( N + ( 2 x. K ) ) ) - ( seq M ( + , F ) ` N ) ) ) <_ ( G ` ( N + 1 ) ) /\ ( abs ` ( ( seq M ( + , F ) ` ( ( N + ( 2 x. K ) ) + 1 ) ) - ( seq M ( + , F ) ` N ) ) ) <_ ( G ` ( N + 1 ) ) ) ) |