This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence of real numbers converges, existence version. (Contributed by NM, 4-Apr-2005) (Revised by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caucvg.1 | |- Z = ( ZZ>= ` M ) |
|
| caurcvg2.2 | |- ( ph -> F e. V ) |
||
| caurcvg2.3 | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
||
| Assertion | caurcvg2 | |- ( ph -> F e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvg.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | caurcvg2.2 | |- ( ph -> F e. V ) |
|
| 3 | caurcvg2.3 | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
|
| 4 | 1rp | |- 1 e. RR+ |
|
| 5 | 4 | ne0ii | |- RR+ =/= (/) |
| 6 | r19.2z | |- ( ( RR+ =/= (/) /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) -> E. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
|
| 7 | 5 3 6 | sylancr | |- ( ph -> E. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
| 8 | simpl | |- ( ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( F ` k ) e. RR ) |
|
| 9 | 8 | ralimi | |- ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) |
| 10 | eqid | |- ( ZZ>= ` j ) = ( ZZ>= ` j ) |
|
| 11 | simprr | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) |
|
| 12 | fveq2 | |- ( k = n -> ( F ` k ) = ( F ` n ) ) |
|
| 13 | 12 | eleq1d | |- ( k = n -> ( ( F ` k ) e. RR <-> ( F ` n ) e. RR ) ) |
| 14 | 13 | rspccva | |- ( ( A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR /\ n e. ( ZZ>= ` j ) ) -> ( F ` n ) e. RR ) |
| 15 | 11 14 | sylan | |- ( ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) /\ n e. ( ZZ>= ` j ) ) -> ( F ` n ) e. RR ) |
| 16 | 15 | fmpttd | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) : ( ZZ>= ` j ) --> RR ) |
| 17 | fveq2 | |- ( j = m -> ( ZZ>= ` j ) = ( ZZ>= ` m ) ) |
|
| 18 | fveq2 | |- ( j = m -> ( F ` j ) = ( F ` m ) ) |
|
| 19 | 18 | oveq2d | |- ( j = m -> ( ( F ` k ) - ( F ` j ) ) = ( ( F ` k ) - ( F ` m ) ) ) |
| 20 | 19 | fveq2d | |- ( j = m -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) = ( abs ` ( ( F ` k ) - ( F ` m ) ) ) ) |
| 21 | 20 | breq1d | |- ( j = m -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) |
| 22 | 21 | anbi2d | |- ( j = m -> ( ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) ) |
| 23 | 17 22 | raleqbidv | |- ( j = m -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> A. k e. ( ZZ>= ` m ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) ) |
| 24 | 23 | cbvrexvw | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> E. m e. Z A. k e. ( ZZ>= ` m ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) |
| 25 | fveq2 | |- ( k = i -> ( F ` k ) = ( F ` i ) ) |
|
| 26 | 25 | eleq1d | |- ( k = i -> ( ( F ` k ) e. RR <-> ( F ` i ) e. RR ) ) |
| 27 | 25 | fvoveq1d | |- ( k = i -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) = ( abs ` ( ( F ` i ) - ( F ` m ) ) ) ) |
| 28 | 27 | breq1d | |- ( k = i -> ( ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x <-> ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 29 | 26 28 | anbi12d | |- ( k = i -> ( ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) <-> ( ( F ` i ) e. RR /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) ) |
| 30 | 29 | cbvralvw | |- ( A. k e. ( ZZ>= ` m ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) <-> A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. RR /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 31 | recn | |- ( ( F ` i ) e. RR -> ( F ` i ) e. CC ) |
|
| 32 | 31 | anim1i | |- ( ( ( F ` i ) e. RR /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) -> ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 33 | 32 | ralimi | |- ( A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. RR /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) -> A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 34 | 30 33 | sylbi | |- ( A. k e. ( ZZ>= ` m ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) -> A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 35 | 34 | reximi | |- ( E. m e. Z A. k e. ( ZZ>= ` m ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 36 | 24 35 | sylbi | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> E. m e. Z A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 37 | 36 | ralimi | |- ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> A. x e. RR+ E. m e. Z A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 38 | 3 37 | syl | |- ( ph -> A. x e. RR+ E. m e. Z A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 39 | 38 | adantr | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> A. x e. RR+ E. m e. Z A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 40 | 1 10 | cau4 | |- ( j e. Z -> ( A. x e. RR+ E. m e. Z A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) <-> A. x e. RR+ E. m e. ( ZZ>= ` j ) A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) ) |
| 41 | 40 | ad2antrl | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> ( A. x e. RR+ E. m e. Z A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) <-> A. x e. RR+ E. m e. ( ZZ>= ` j ) A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) ) |
| 42 | 39 41 | mpbid | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> A. x e. RR+ E. m e. ( ZZ>= ` j ) A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 43 | simpr | |- ( ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) -> ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) |
|
| 44 | 10 | uztrn2 | |- ( ( m e. ( ZZ>= ` j ) /\ i e. ( ZZ>= ` m ) ) -> i e. ( ZZ>= ` j ) ) |
| 45 | fveq2 | |- ( n = i -> ( F ` n ) = ( F ` i ) ) |
|
| 46 | eqid | |- ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) = ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) |
|
| 47 | fvex | |- ( F ` i ) e. _V |
|
| 48 | 45 46 47 | fvmpt | |- ( i e. ( ZZ>= ` j ) -> ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` i ) = ( F ` i ) ) |
| 49 | 44 48 | syl | |- ( ( m e. ( ZZ>= ` j ) /\ i e. ( ZZ>= ` m ) ) -> ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` i ) = ( F ` i ) ) |
| 50 | fveq2 | |- ( n = m -> ( F ` n ) = ( F ` m ) ) |
|
| 51 | fvex | |- ( F ` m ) e. _V |
|
| 52 | 50 46 51 | fvmpt | |- ( m e. ( ZZ>= ` j ) -> ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` m ) = ( F ` m ) ) |
| 53 | 52 | adantr | |- ( ( m e. ( ZZ>= ` j ) /\ i e. ( ZZ>= ` m ) ) -> ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` m ) = ( F ` m ) ) |
| 54 | 49 53 | oveq12d | |- ( ( m e. ( ZZ>= ` j ) /\ i e. ( ZZ>= ` m ) ) -> ( ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` i ) - ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` m ) ) = ( ( F ` i ) - ( F ` m ) ) ) |
| 55 | 54 | fveq2d | |- ( ( m e. ( ZZ>= ` j ) /\ i e. ( ZZ>= ` m ) ) -> ( abs ` ( ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` i ) - ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` m ) ) ) = ( abs ` ( ( F ` i ) - ( F ` m ) ) ) ) |
| 56 | 55 | breq1d | |- ( ( m e. ( ZZ>= ` j ) /\ i e. ( ZZ>= ` m ) ) -> ( ( abs ` ( ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` i ) - ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` m ) ) ) < x <-> ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) ) |
| 57 | 43 56 | imbitrrid | |- ( ( m e. ( ZZ>= ` j ) /\ i e. ( ZZ>= ` m ) ) -> ( ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) -> ( abs ` ( ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` i ) - ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` m ) ) ) < x ) ) |
| 58 | 57 | ralimdva | |- ( m e. ( ZZ>= ` j ) -> ( A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) -> A. i e. ( ZZ>= ` m ) ( abs ` ( ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` i ) - ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` m ) ) ) < x ) ) |
| 59 | 58 | reximia | |- ( E. m e. ( ZZ>= ` j ) A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) -> E. m e. ( ZZ>= ` j ) A. i e. ( ZZ>= ` m ) ( abs ` ( ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` i ) - ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` m ) ) ) < x ) |
| 60 | 59 | ralimi | |- ( A. x e. RR+ E. m e. ( ZZ>= ` j ) A. i e. ( ZZ>= ` m ) ( ( F ` i ) e. CC /\ ( abs ` ( ( F ` i ) - ( F ` m ) ) ) < x ) -> A. x e. RR+ E. m e. ( ZZ>= ` j ) A. i e. ( ZZ>= ` m ) ( abs ` ( ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` i ) - ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` m ) ) ) < x ) |
| 61 | 42 60 | syl | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> A. x e. RR+ E. m e. ( ZZ>= ` j ) A. i e. ( ZZ>= ` m ) ( abs ` ( ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` i ) - ( ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ` m ) ) ) < x ) |
| 62 | 10 16 61 | caurcvg | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ~~> ( limsup ` ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ) ) |
| 63 | eluzelz | |- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
|
| 64 | 63 1 | eleq2s | |- ( j e. Z -> j e. ZZ ) |
| 65 | 64 | ad2antrl | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> j e. ZZ ) |
| 66 | 2 | adantr | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> F e. V ) |
| 67 | fveq2 | |- ( n = k -> ( F ` n ) = ( F ` k ) ) |
|
| 68 | 67 | cbvmptv | |- ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) = ( k e. ( ZZ>= ` j ) |-> ( F ` k ) ) |
| 69 | 10 68 | climmpt | |- ( ( j e. ZZ /\ F e. V ) -> ( F ~~> ( limsup ` ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ) <-> ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ~~> ( limsup ` ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ) ) ) |
| 70 | 65 66 69 | syl2anc | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> ( F ~~> ( limsup ` ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ) <-> ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ~~> ( limsup ` ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ) ) ) |
| 71 | 62 70 | mpbird | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> F ~~> ( limsup ` ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ) ) |
| 72 | climrel | |- Rel ~~> |
|
| 73 | 72 | releldmi | |- ( F ~~> ( limsup ` ( n e. ( ZZ>= ` j ) |-> ( F ` n ) ) ) -> F e. dom ~~> ) |
| 74 | 71 73 | syl | |- ( ( ph /\ ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR ) ) -> F e. dom ~~> ) |
| 75 | 74 | expr | |- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( F ` k ) e. RR -> F e. dom ~~> ) ) |
| 76 | 9 75 | syl5 | |- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> F e. dom ~~> ) ) |
| 77 | 76 | rexlimdva | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> F e. dom ~~> ) ) |
| 78 | 77 | rexlimdvw | |- ( ph -> ( E. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> F e. dom ~~> ) ) |
| 79 | 7 78 | mpd | |- ( ph -> F e. dom ~~> ) |