This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprval.1 | |- B = ( Base ` R ) |
|
| opprval.2 | |- .x. = ( .r ` R ) |
||
| opprval.3 | |- O = ( oppR ` R ) |
||
| opprmulfval.4 | |- .xb = ( .r ` O ) |
||
| Assertion | opprmul | |- ( X .xb Y ) = ( Y .x. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | |- B = ( Base ` R ) |
|
| 2 | opprval.2 | |- .x. = ( .r ` R ) |
|
| 3 | opprval.3 | |- O = ( oppR ` R ) |
|
| 4 | opprmulfval.4 | |- .xb = ( .r ` O ) |
|
| 5 | 1 2 3 4 | opprmulfval | |- .xb = tpos .x. |
| 6 | 5 | oveqi | |- ( X .xb Y ) = ( X tpos .x. Y ) |
| 7 | ovtpos | |- ( X tpos .x. Y ) = ( Y .x. X ) |
|
| 8 | 6 7 | eqtri | |- ( X .xb Y ) = ( Y .x. X ) |