This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitcl.1 | |- B = ( Base ` R ) |
|
| unitcl.2 | |- U = ( Unit ` R ) |
||
| Assertion | unitcl | |- ( X e. U -> X e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.1 | |- B = ( Base ` R ) |
|
| 2 | unitcl.2 | |- U = ( Unit ` R ) |
|
| 3 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 4 | eqid | |- ( ||r ` R ) = ( ||r ` R ) |
|
| 5 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 6 | eqid | |- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
|
| 7 | 2 3 4 5 6 | isunit | |- ( X e. U <-> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 8 | 7 | simplbi | |- ( X e. U -> X ( ||r ` R ) ( 1r ` R ) ) |
| 9 | 1 4 | dvdsrcl | |- ( X ( ||r ` R ) ( 1r ` R ) -> X e. B ) |
| 10 | 8 9 | syl | |- ( X e. U -> X e. B ) |