This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrng.b | |- B = ( Base ` R ) |
|
| isdrng.u | |- U = ( Unit ` R ) |
||
| isdrng.z | |- .0. = ( 0g ` R ) |
||
| Assertion | isdrng | |- ( R e. DivRing <-> ( R e. Ring /\ U = ( B \ { .0. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrng.b | |- B = ( Base ` R ) |
|
| 2 | isdrng.u | |- U = ( Unit ` R ) |
|
| 3 | isdrng.z | |- .0. = ( 0g ` R ) |
|
| 4 | fveq2 | |- ( r = R -> ( Unit ` r ) = ( Unit ` R ) ) |
|
| 5 | 4 2 | eqtr4di | |- ( r = R -> ( Unit ` r ) = U ) |
| 6 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( r = R -> ( Base ` r ) = B ) |
| 8 | fveq2 | |- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
|
| 9 | 8 3 | eqtr4di | |- ( r = R -> ( 0g ` r ) = .0. ) |
| 10 | 9 | sneqd | |- ( r = R -> { ( 0g ` r ) } = { .0. } ) |
| 11 | 7 10 | difeq12d | |- ( r = R -> ( ( Base ` r ) \ { ( 0g ` r ) } ) = ( B \ { .0. } ) ) |
| 12 | 5 11 | eqeq12d | |- ( r = R -> ( ( Unit ` r ) = ( ( Base ` r ) \ { ( 0g ` r ) } ) <-> U = ( B \ { .0. } ) ) ) |
| 13 | df-drng | |- DivRing = { r e. Ring | ( Unit ` r ) = ( ( Base ` r ) \ { ( 0g ` r ) } ) } |
|
| 14 | 12 13 | elrab2 | |- ( R e. DivRing <-> ( R e. Ring /\ U = ( B \ { .0. } ) ) ) |